
International Journal of New Innovations in Engineering and Technology (IJNIET)

Vol. 1 Issue 3 February 2013 81 ISSN: 2319-6319

Comparision of various Algorithms of Field-

Programmable Gate Arrays technology for

digital signal processing system

Kuldeep bhardwaj
Ph.d (ECE) scholar

Sai nath university, Ranchi (Jharkhand)

Abstract - Field-Programmable Gate Arrays (FPGAs) are revolutionizing digital signal processing as novel FPGA

families are replacing ASICs and PDSPs for front-end digital signal processing algorithms. So the efficient

implementation of these algorithms is critical and is the main goal of this paper. It starts with an overview of today's

FPGA technology, devices, and tools for designing state-of-the-art DSP systems.

Keywords: DSP, N-tap filter, impulse invariant and time-invariance

I. INTRODUCATION

Digital filtering is one of the most powerful tools of DSP. Apart from the obvious advantages of virtually

eliminating errors in the filter associated with passive component fluctuations over time and temperature, op amp

drift (active filters), etc., digital filters are capable of performance specifications that would, at best, be extremely

difficult, if not impossible, to achieve with an analog implementation. In addition, the characteristics of a digital

filter can be easily changed under software control. Therefore, they are widely used in adaptive filtering applications

in communications such as echo cancellation in modems, noise cancellation, and speech recognition.

The actual procedure for designing digital filters has the same fundamental elements as that for analog filters. First,

the desired filter responses are characterized, and the filter parameters are then calculated. Characteristics such as

amplitude and phase response are derived in the same way. The key difference between analog and digital filters is

that instead of calculating resistor, capacitor, and inductor values for an analog filter, coefficient values are

calculated for a digital filter. So for the digital filter, numbers replace the physical resistor and capacitor components

of the analog filter. These numbers reside in a memory as filter coefficients and are used with the sampled data

values from the ADC to perform the filter calculations.[1]

TYPES OF DIGITAL FILTERS

■ Moving Average

■ Finite Impulse Response (FIR) ◆ Linear Phase ◆ Easy to Design ◆ Computationally Intensive

■ Infinite Impulse Response (IIR) ◆ Based on Classical Analog Filters ◆ Computationally Efficient

■ Lattice Filters (Can be FIR or IIR)

■ Adaptive Filters

II. LITERATURE REVIEW

The real-time digital filter, because it is a discrete time function, works with digitized data as opposed to a

continuous waveform, and a new data point is acquired each sampling period. Because of this discrete nature, data

International Journal of New Innovations in Engineering and Technology (IJNIET)

Vol. 1 Issue 3 February 2013 82 ISSN: 2319-6319

samples are referenced as numbers such as sample 1, sample 2, sample 3, etc. Figure 6.1 shows a low frequency

signal containing higher frequency noise which must be filtered out. This waveform must be digitized with an ADC

to produce samples x(n). These data values are fed to the digital filter, which in this case is a lowpass filter. The

output data samples, y(n), are used to reconstruct an analog waveform using a low glitch DAC.

Digital filters, however, are not the answer to all signal processing filtering requirements. In order to maintain real-

time operation, the DSP processor must be able to execute all the steps in the filter routine within one sampling

clock period, 1/fs . A fast general purpose fixed-point DSP such as the ADSP-2189M at 75MIPS can execute a

complete filter tap multiply-accumulate instruction in 13.3ns. The ADSP-2189M requires N+5 instructions for an N-

tap filter. For a 100-tap filter, the total execution time is approximately 1.4µs. This corresponds to a maximum

possible sampling frequency of 714kHz, thereby limiting the upper signal bandwidth to a few hundred kHz. [2]

However, it is possible to replace a general purpose DSP chip and design special hardware digital filters which will

operate at video-speed sampling rates. In other cases, the speed limitations can be overcome by first storing the high

speed ADC data in a buffer memory. The buffer memory is then read at a rate which is compatible with the speed of

the DSP-based digital filter. In this manner, pseudorealtime operation can be maintained as in a radar system, where

signal processing is typically done on bursts of data collected after each transmitted pulse.

Another option is to use a third-party dedicated DSP filter engine like the Systolix PulseDSP™ filter core. The

AD7725 16-bit sigma-delta ADC has an on-chip PulseDSP filter which can do 125 million multiply-accumulates per

second.

Even in highly oversampled sampled data systems, an analog antialiasing filter is still required ahead of the ADC

and a reconstruction (anti-imaging) filter after the DAC. Finally, as signal frequencies increase sufficiently, they

surpass the capabilities of available ADCs, and digital filtering then becomes impossible. Active analog filtering is

not possible at extremely high frequencies because of op amp bandwidth and distortion limitations, and filtering

requirements must then be met using purely passive components. The primary focus of the following discussions

will be on filters which can run in real-time under DSP program control. As an example, consider the comparison

between an analog and a digital filter shown in Figure 6.3. The cutoff frequency of the both filters is 1kHz. The

analog filter is realized as a 6-pole Chebyshev Type 1 filter (ripple in passband, no ripple in stopband). In practice,

this filter would probably be realized using three 2-pole stages, each of which requires an op amp, and several

resistors and capacitors. The 6-pole design is certainly not trivial, and maintaining the 0.5dB ripple specification

requires accurate component selection and matching.[3]

International Journal of New Innovations in Engineering and Technology (IJNIET)

Vol. 1 Issue 3 February 2013 83 ISSN: 2319-6319

III. METHODOLOGY

A popular method for IIR filter design is to first design the analog-equivalent filter and then mathematically

transform the transfer function H(s) into the z-domain, H(z). Multiple pole designs are implemented using cascaded

biquad sections. The most popular analog filters are the Butterworth, Chebyshev, Elliptical, and Bessel (see Figure

6.35). There are many CAD programs available to generate the Laplace transform, H(s), for these filters.

The all-pole Butterworth (also called maximally flat) has no ripple in the passband or stopband and has monotonic

response in both regions. The all-pole Type 1 Chebyshev filter has a faster rolloff than the Butterworth (for the same

number of poles) and has ripple in the passband. The Type 2 Chebyschev filter is rarely used, but has ripple in the

stopband rather than the passband. The Elliptical (Cauer) filter has poles and zeros and ripple in both the passband

and stopband. This filter has even faster rolloff than the Chebyshev for the same number of poles. The Elliptical

filter is often used where degraded phase response can be tolerated.

Finally, the Bessel (Thompson) filter is an all-pole filter which is optimized for pulse response and linear phase but

has the poorest rolloff of any of the types discussed for the same number of poles.[4]

REVIEW OF POPULAR ANALOG FILTERS

_ Butterworth

_ All Pole, No Ripples in Passband or Stopband

_ Maximally Flat Response (Fastest Roll-off with No Ripple)

_ Chebyshev (Type 1)

_ All Pole, Ripple in Passband, No Ripple in Stopband

_ Shorter Transition Region than Butterworth for Given Number

of Poles

_ Type 2 has Ripple in Stopband, No Ripple in Passband

_ Elliptical (Cauer)

_ Has Poles and Zeros, Ripple in Both Passband and Stopband

_ Shorter Transition Region than Chebyshev for Given Number

of Poles

_ Degraded Phase Response

_ Bessel (Thompson)

_ All Pole, No Ripples in Passband or Stopband

_ Optimized for Linear Phase and Pulse Response

_ Longest Transition Region of All for Given Number of Poles

All of the above types of analog filters are covered in the literature, and their Laplace transforms, H(s), are readily

available – either from tables or CAD programs. There are three methods used to convert the Laplace transform into

the z-transform: impulse invariant transformation, bilinear transformation, and the matched z-transform. The

resulting z-transforms can be converted into the coefficients of the IIR biquad. These techniques are highly

mathematically intensive and will not be discussed further. A CAD approach for IIR filter design is similar to the

Parks-McClellan program used for FIR filters. This technique uses the Fletcher-Powell algorithm. In calculating the

throughput time of a particular DSP IIR filter, one should examine the benchmark performance specification for a

biquad filter section. For the ADSP-21xx-family, seven instruction cycles are required to execute a biquad filter

output sample. For the ADSP-2189M, 75MIPS DSP, this corresponds to 7 × 13.3ns = 93ns, corresponding to a

maximum possible sampling frequency of 10MSPS (neglecting overhead).

IIR FILTER DESIGN TECHNIQUES

_ Impulse Invarient Transformation Method

_ Start with H(s) for Analog Filter

_ Take Inverse Laplace Transform to get Impulse Response

_ Obtain z-Transform H(z) from Sampled Impulse Response

_ z-Transform Yields Filter Coefficients

_ Aliasing Effects Must be Considered

International Journal of New Innovations in Engineering and Technology (IJNIET)

Vol. 1 Issue 3 February 2013 84 ISSN: 2319-6319

_ Bilinear Transformation Method

_ Another Method for Transforming H(s) into H(z)

_ Performance Determined by the Analog System’s

Differential Equation

_ Aliasing Effects do not Occur

_ Matched z-Transform Method

_ Maps H(s) into H(z) for filters with both poles and zeros

_ CAD Methods

_ Fletcher-Powell Algorithm

_ Implements Cascaded Biquad Sections

THROUGHPUT CONSIDERATIONS FOR IIR FILTERS

_ Determine How Many Biquad Sections (N) are Required to

Realize the Desired Frequency Response

_ Multiply this by the number of instruction cycles per Biquad

for the DSP and add overhead cycles (5N + 2 cycles for the

ADSP-21xx series, for example).

_ The Result (plus overhead) is the Minimum Allowable

Sampling Period (1 / fs) for Real-Time Operation

Choosing between FIR and IIR filter designs can be somewhat of a challenge, but a few basic guidelines can be

given. Typically, IIR filters are more efficient than FIR filters because they require less memory and fewer multiply-

accumulates are needed. IIR filters can be designed based upon previous experience with analog filter designs. IIR

filters may exhibit instability problems, but this is much less likely to occur if higher order filters are designed by

cascading second-order systems.

On the other hand, FIR filters require more taps and multiply-accumulates for a given cutoff frequency response, but

have linear phase characteristics. Since FIR filters operate on a finite history of data, if some data is corrupted (ADC

sparkle codes, for example) the FIR filter will ring for only N–1 samples. Because of the feedback, however, an IIR

filter will ring for a considerably longer period of time. If sharp cutoff filters are needed and processing time is at a

premium, IIR elliptic filters are a good choice. If the number of multiply/accumulates is not prohibitive, and linear

phase is a requirement, then the FIR should be chosen.

There are two fundamental types of digital filters: finite impulse response (FIR) and infinite impulse response (IIR).

As the terminology suggests, these classifications refer to the filter’s impulse response. By varying the weight of the

coefficients and the number of filter taps, virtually any frequency response characteristic can be realized with an FIR

filter. As has been shown, FIR filters can achieve performance levels which are not possible with analog filter

techniques (such as perfect linear phase response). However, high performance FIR filters generally require a large

International Journal of New Innovations in Engineering and Technology (IJNIET)

Vol. 1 Issue 3 February 2013 85 ISSN: 2319-6319

number of multiply-accumulates and therefore require fast and efficient DSPs. On the other hand, IIR filters tend to

mimic the performance of traditional analog filters and make use of feedback. Therefore their impulse response

extends over an infinite period of time. Because of feedback, IIR filters can be implemented with fewer coefficients

than for an FIR filter. Lattice filters are simply another way to implement either FIR or IIR filters and are often used

in speech processing applications. Finally, digital filters lend themselves to adaptive filtering applications simply

because of the speed and ease with which the filter characteristics can be changed by varying the filter coefficients[4

IV. FINDINGS

The most elementary form of an FIR filter is a moving average filter as shown in Figure 6.6. Moving average filters

are popular for smoothing data, such as in the analysis of stock prices, etc. The input samples, x(n) are passed

through a series of buffer registers (labeled z–1, corresponding to the z-transform representation of a delay element).

In the example shown, there are four taps corresponding to a fourpoint moving average. Each sample is multiplied

by 0.25, and these results are added to yield the final moving average output y(n). The figure also shows the general

equation of a moving average filter with N taps. Note again that N refers to the number of filter taps, and not the

ADC or DAC resolution as in previous sections.

Since the coefficients are equal, an easier way to perform a moving average filter is shown in Figure 6.7. Note that

the first step is store the first four samples, x(0), x(1), x(2), x(3) in a register. These quantities are added and then

multiplied by 0.25 to yield the first output, y(3). Note that the initial outputs y(0), y(1), and y(2) are not valid

because all registers are not full until sample x(3) is received. When sample x(4) is received, it is added to the result,

and sample x(0) is subtracted from the result. The new result must then be multiplied by 0.25. Therefore, the

calculations required to produce a new output consist of one addition, one subtraction, and one multiplication,

regardless of the length of the moving average filter.

The step function response of a 4-point moving average filter is shown in Figure 6.8. Notice that the moving average

filter has no overshoot. This makes it useful in signal processing applications where random white noise must be

filtered but pulse response preserved. Of all the possible linear filters that could be used, the moving average

produces the lowest noise for a given edge sharpness. This is illustrated in Figure 6.9, where the noise level becomes

lower as the number of taps are increased. Notice that the 0% to 100% risetime of the pulse response is equal to the

total number of taps in the filter multiplied by the sampling period.

International Journal of New Innovations in Engineering and Technology (IJNIET)

Vol. 1 Issue 3 February 2013 86 ISSN: 2319-6319

V. CONCLUSION

An introduction to digital filters has been presented. The main utility of the analysis methods presented is in

ascertaining how a given filter will affect the spectrum of a signal passing through it. Some of the concepts

introduced were linearity, time-invariance, filter impulse response, difference equations, transient response, steady-

state response, transfer functions, amplitude response, phase response, phase delay, group delay, linear

phase, minimum phase, maximum phase, poles and zeros, filter stability, and the general use of complex numbers to

represent signals, spectra, and filters. Additionally, practical filtering in matlab has been discussed.

However, this is still only the beginning. With these foundations there is an unlimited number of avenues of

investigation into applications of digital filters.

REFERENCES

[1] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Second Edition, 1999, California Technical

Publishing, P.O. Box 502407, San Diego, CA 92150. Also available for free download at: http://www.dspguide.com or

http://www.analog.com

[2] C. Britton Rorabaugh, DSP Primer, McGraw-Hill, 1999. 3. Richard J. Higgins, Digital Signal Processing in VLSI, Prentice-Hall, 1990.

[3] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice- Hall, 1975.

[4] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, 1975.

[5] John G. Proakis and Dimitris G. Manolakis, Introduction to Digital Signal Processing, MacMillian, 1988.

