
International Journal of New Innovations in Engineering and Technology

Volume 3 Issue 3 – July 2015 68 ISSN : 2319-6319

An Approach for Predicting Hard Keyword

Queries

A Sangeetha

 Asst. Prof.

Department of Computer Science and Engineering,

CBIT, Hyderabad, Telangana State ,India

P Sriharsha

M.Tech. Student

Department of Computer Science and Engineering,

CBIT, Hyderabad, Telangana State ,India

Abstract: A query is a request for information retrieval from databases. Keyword query is referred as set of

correlated words which collectively referred to a query. Keyword queries on databases provide easy access to data,

but often suffer from low ranking quality. They are of low precision, and the system may suggest the user alternative

queries for such hard queries. It would be useful to identify queries that are likely to have low ranking quality to

improve the user satisfaction. A benchmark is a point of reference which is used for analyzing and evaluating the

performance of a system or a database. Certain benchmarks are used for analyzing the performance of query , for

improving the query from robustness. There have been collaborative efforts to provide standard benchmarks and

evaluation platforms for keyword search methods over databases. One effort is the data-centric track of INEX

Workshop Queries was provided by participants of the workshop. Another effort is the series of Semantic Search

Challenges (SemSearch). The results indicate that even with structured data, finding the desired answers to keyword

queries is still a hard task. A principled framework and novel algorithm implemented in this project, measure the

degree of the difficulty of a query over a Database using the ranking robustness principle. Based on the framework,

the algorithm produces the similarity scores which efficiently predict the effectiveness of a keyword query.

Keywords : Robustness , Database, Query, Hard Query.

I. INTRODUCTION

A database is a collection of information that is organized so that it can easily be accessed, managed, and

updated. Database comprises of entities, entities posses attributes, attributes take attribute values. A query is a

request for information retrieval from database. Keyword query is defined as set of correlated words which are

collectively referred to a query. In order to retrieve the data , Keyword query interface (KQI's)[1] are useful for

searching and exploring the data.

 Users, unlike SQL queries, mainly for the information retrieval, do not usually cite the required idea

schema elements for each query term. It is the responsibility of the KQI to find the required attributes associated

to each term in the query. Moreover, users do not give enough information to select out from their desired

entities.

 As a result of the scenario, keyword queries on the databases are prone to low precision. Low precision

occurs when results produced suffer from low ranking. KQI must recognize such queries and warn the user to

employ alternatives like query reformulation or query suggestions. Such queries which have low precision are

known as hard keyword queries or difficult keyword queries.

 For predicting the difficult keyword queries, it is necessary to know some of the important properties of

a query. The query may be under specified, where lower precision in a query. The second type is over precision,

where specification of several keywords in a query is cited. The more different the answers of a query are, the

more difficult the query is over a collection of data.

 For example, query Q1: Godfather on the IMDB database (http://www.imdb.com) do not describe if

the given user is interested in movies whose title is Godfather or movies distributed by the Godfather Company.

Thus, a KQI must find the desired attributes associated with each term in the query. Second, the layout of the

output is not specified, i.e., users do not give enough information to single out exactly their desired entities. The

answers which are produced for the queries are vast in number and sometimes they are not ranked properly.

Example consider a query as " ancient roman era" in IMDB database, the perspective behind the user who had

posed the query would be to collect information of the movies which are based on roman era, but the ranking of

the answers are low , that is they dont produce the exact movies list . Instead they may produce a production

International Journal of New Innovations in Engineering and Technology

Volume 3 Issue 3 – July 2015 69 ISSN : 2319-6319

unit name , or a dialogue from a movie etc , hence causing to low ranking, which are known as hard keyword

queries.

 From observations of benchmarks, two properties are analyzed for the hard queries. They are either the

user queries which are posed are under specified, or they are over specified. Example, for under specified,

"Carolina" as query. "Carolina" is under specified because it may be a city in USA, or it may be a name of a

person, or even a name of restaurant somewhere else." Cricket player Yuvraj Singh best rating”, consider this as

over specification as the user gives all the information hints, which he want to get.

1.1 Motivation

 While searching for the query, different types of keywords are combined to form a search. The results are

produced where they may be relevant or they may be irrelevant. At sometimes the results are produced

(example: In Google, the required results may be at the bottom of the irrelevant ones). To reduce this type of

problem, we follow an algorithm which is known as structured robustness algorithm. By this we can at least

reduce the irrelevant keywords and predict the required ones,

1.2 Problem Statement

A benchmark is a point of reference where performance of a system can be evaluated. Query performance and

Query evaluation are some important features for analyzing the performance of information retrieval process.

Standard benchmarks like INEX data centric workshop et al [6], and sem search.

 Keyword queries are applied to the searching mechanisms of these benchmarks. They are useful in

accessing the data, but they lack in the ranking of the precise answer. Often they are also recalled, for

reconstructing query. Low precision occurs, as the system suggest the users for alternative queries instead of

hard queries.

 The characteristics of hard query are also not analyzed by these benchmarks, which can lead to

understanding the hardness. The results indicate that even with structured data, finding the desired answers to

keyword queries is still a hard task.

 Keyword queries under the benchmark exhibit low rank suffering i.e low disclosing of the prescribed

information in a result list. Performance is poor on the subset of query, i.e the part of the query results are not

produced exactly

1.3 Solution

We measure degree of hardness of a keyword query over database by using the ranking robustness principle.

 By using structured robustness algorithm proposed by Cheng et a[1] we calculate the rankings between

the original and the corrupted versions of collected data , which is posed by a keyword query.

 We can assure accurate results, when using the structured robustness algorithm. The results which are

exact and, according to the user perspective are produced at the top results, thus reducing the hardness of a

query.

 The collection of information in the database can be in the form of structured and unstructured format.

Structured database information is discrete in the form of rows and columns. Unstructured have less defined

boundaries, small discrete objects. Certain methods have been proposed for predicting the hardness of a query.

These methods have been employed on unstructured documents.

 In the history methods are employed by the researchers over plain text document collections. However,

these techniques are not applicable to the problem since they ignore the structure of the database. The methods

are classified into two process pre-retrieval and post retrieval.

 An early difficulty prediction technique, known as pre-retrieval [2] method is used for predicting the

difficulty of a query without computing its results. These methods usually use the statistical properties of the

terms in the query to measure specificity, ambiguity, or term-relatedness of the query to predict its difficulty.

Average inversion term frequency is used as a measurement for statistical characteristics of a query term (OR)

the frequency of number of documents that contain at least one query term. These methods assume that the more

differentiable the query terms are, the easier the query is present.

 Post-retrieval methods utilize the results of a query to predict its difficulty and generally fall into one of

the following categories

 1. Clarity scored based

 2. Ranking score based

 3. Robustness score base

 Clarity score based [3] assume that users are interested in a very few topics, so they deem a query easy

if its results belong to very few topics and therefore, sufficiently differentiable from other documents in the

collection. Researchers have shown that this approach predicts the difficulty of a query more accurately than pre

retrieval based methods for text documents. Some systems measure the distinguish ability of the queries results

from the documents in the collection by comparing the probability distribution of terms in the results with the

International Journal of New Innovations in Engineering and Technology

Volume 3 Issue 3 – July 2015 70 ISSN : 2319-6319

probability distribution of terms in the whole collection. If these probability distributions are relatively similar,

the query results contain information about almost as many topics as the whole collection, thus, the query is

considered difficult.

 However, one requires domain knowledge about the data sets to extend idea of clarity score for queries

over databases. Each topic in a database contains the entities that are about a similar subject. It is generally hard

to define a formula that partitions entities into topics as it requires finding an effective similarity function.

 Ranking-score based [4] of a document returned by the retrieval systems for an input query may

estimate the similarity of the query and the document. Some recent methods measure the difficulty of a query.

based on the score distribution of its results. Zhou and Croft et al[4] argue that the information gained from a

desired list of documents should be much more than the information gained from typical documents in the

collection for an easy query. They measure the degree of the difficulty of a query by computing the difference

between the weighted entropy of the top ranked results scores and the weighted entropy of other documents

scores in the collection, they show that the standard deviation of ranking scores of top-k results estimates the

quality of the top ranked results effectively.

 Robustness based [5] are another group of post retrieval methods. Robustness based preretrieval is

based on Ranking Robustness Principle, which argues that there is a (negative) correlation between the

difficulty of a query and its ranking robustness in the presence of noise in the data. This robustness based

principle as it is first applied in unstructured data it is called unstructured robustness principle. Mittendorf et

al[5] has shown that if a text retrieval method effectively ranks the answers to a query in a collection of text

documents, it will also perform well for that query over the version of the collection that contains some errors

such as repeated terms . In other words, the degree of the difficulty of a query is positively correlated with the

robustness of its ranking over the original and the corrupted versions of the collection. We call this observation

the Ranking Robustness Principle.

 The principle has been applied to predict the degree of the difficulty of a query over free text

documents. It observes the similarities over rankings of query for the original and corrupted versions to predict

the difficulty of a query over collection. They deem a query to be more difficult if its rankings over the original

and the corrupted versions of the data are less similar. They have also shown that this approach is generally

more effective than using methods based on the similarities of probability distributions from clarity scored

based. This degree of prediction is especially important for ranking over databases.

 Hence, we can use Ranking Robustness Principle as a domain independent proxy metric to measure the

degree of the difficulties of queries.

 A database mainly is in a structural format where the data or information is in form of rows and

columns. To predict the hard queries, we analyze the property of these queries on database. It is well defined

that the more diversified or more variety, the answers to a query are, the more hard or difficult the collection of

query over text document.

1.1 Properties of hard queries

The sources of difficulty for answering a query over database are analyzed

 The more entities match the terms in a query, the less specificity of this query.

 Each attribute describes a different aspect of an entity and defines the context of terms in attribute

values of it. If a query matches different attributes in its answers, it will have a more diverse set of potential

answers in database, and hence it has higher attribute level ambiguity and it is harder to answer properly.

 Each entity set contains the information about a different type of entities and defines another level of

context (in addition to the context defined by attributes) for terms. Hence, if a query matches entities from more

entity sets, it will have higher entity set level ambiguity.

II. PROPOSED ALGORITHM

2.1 Algorithm for hard keyword queries
Due to the drawback of difficulty of keywords, which produces low ranking, a structure has been proposed to

understand the features of hard queries over the databases.

 Some of the important properties of the difficulty in keywords had been surveyed it is well organized

that the more diversified the answers of a query are, the more difficult the query is over a collection of the text

documents. We expand this idea for queries over databases and propose three sources of difficulty for answering

a query over a database as follows.

 The more entities match the terms in a query, the less particularity of this query and it is harder to

answer properly. For example: Tom is the name of an actor. when user submits the query: Tom, the KQI must

International Journal of New Innovations in Engineering and Technology

Volume 3 Issue 3 – July 2015 71 ISSN : 2319-6319

settle the desired tom according to the user request. Whereas the query: cuppola , matches a small number of

people so it is easy to find the relevant answers.

 Each attribute describes a different aspect of an entity and defines the context of terms in attribute

values. If a query matches different attributes in its answers, it will have a more diverse set of potential answers

in database, and hence it has higher attribute level ambiguity and it is harder to answer properly.

 For example assume query: Godfather, present in IMDB, contains equivalent term in title and some

contain its term in their distributor. A KQI finds the desired attribute for Godfather to get its précised answers.

If we take query: taxi driver do not equal any occurrence of attribute distributor in IMDB. Hence, a KQI already

knows the matching attribute for the query taxi driver and has an simple work to run.

 Each entity set contains the knowledge about a different type of entities and describes another level of

situation (in extension to the context defined by attributes) for terms. Hence, if a query matches entities from

more entity sets, it will have higher entity set level ambiguity.

 Example: In the IMDB database the data about the movie is present in the movie dataset and, actors in

the actors database. If the query is "tragedy", then it is a difficult query because the KQI in IMDB must match

the query term with the entities list of movies so as to search in the genre of tragedy movies . Also the query

term must produce the results from the entities list of actors so that ,actors who are met with tragedy are also

produced as results

 In order to reduce the hardness Shiwen Cheng, Arash Termehchy, and Vagelis Hristidis et al [1]

proposed a framework to understand the characteristics of hard queries over databases. We measure degree of

hardness of a keyword query over database by using the ranking robustness principle.

 By using structured robustness algorithm [1] we calculate the rankings between the original and the

corrupted versions of collected data, which is posed by a keyword query.

 We can assure accurate results, when using the structured robustness algorithm. The results which are

exact with the high similarity scores are produced at the top of the list , according to the user perspective are

produced at the top results thus reducing the hardness of a query.

 The algorithm which is used for calculating the hardness of a query is structured robustness algorithm,

the algorithm runs by the principle of ranking robustness principle [1] states that there is a opposed

interrelationship between the hardness of a query and its ranking robustness in the presence of noise in the data.

In other words, the degree of the difficulty of a query is positively correlated with the robustness of its ranking

over the original and the corrupted versions of the collection. This principle is to predict the degree of the

difficulty of a query over text documents. They compute the similarity between the rankings of the query over

the original and the artificially corrupted versions of a collection.
Step1: Corruption of database

Corruption of structured data is the first step in the Ranking Robustness principle. For that, we create a database

DB using a generative probabilistic model, with the help of the main contents which are terms, attribute values,

attributes, and entity sets. A corrupted version of database is similar to the main database collected.

 Let query be Q, retrieval function be g , the original database and corrupted versions are DB, DB'. The

Database DB can be known as a triplet as it consists of S as entity set, T as attribute, A as attribute value, and V

as the number of distinct terms in DB. Each of the attribute value A can be duplicated using V dimensional

distribution. Xa=(Xa,1.......Xa,v), where Xa,j belongs to Xa, which is a random variable that shows the number

of times of the term Wj in A. The probability mass function of Xa is

 fXa()=Pr(Xa,1=xa,1...........Xa,v= x a,v)

 The random variable XA=(X1,.......X|A|) models attribute value set A, where Xa belongs to XA is

vector of size V that denotes the frequencies of terms in A. So XA is |A| V matrix. Where |A| is the number of

attribute values. The probability mass function of XA is

 fXA()=fXA(.........) = Pr(X1 =X|A| =)

 Where are vectors of size V that contain non negative integers. The domain of is all |A| V

matrices that contain non- negative integers, i.e M(|A| V). Likewise X|T| and X|S| models attributes T and

entity sets S, are corrupted in the same manner.

Step2: Noise introduced in data

Since XA, XT, XS are the corrupted contents of DB; we focus mainly on the noise introduced in the attribute

values only. Noise is simply the inclusion of word in the attribute values of corrupted database (|A| V).

To expand the idea of noise generation by an example, If in original database DB consists of attribute values A1

and A2 under attribute T, A1 have term W and A2 do not contain W. After the noise generation in the DB the

term W exists under A1 and A2 attribute values.

 Given query Q, let be a vector that contains term frequencies for terms W Q V. The vector

model is simplified by assuming that attribute values in DB and terms in Q V are independent.

International Journal of New Innovations in Engineering and Technology

Volume 3 Issue 3 – July 2015 72 ISSN : 2319-6319

f(XA) = .

f(Xa) = .

xj ∈ depicts the number of times wj appears in a noisy version of attribute value Ai and fXi,j (xj) computes

the probability of term wj to appear in Ai xj times.

 The calculation of structured robustness (SR score) is done using the similarity between the answer

lists L and L' by spearman rank correlation. The rank ranges between 1 and -1. When we introduce the content

noise to the attributes and entities it generates to the attribute values. For example attribute "NAME" contains

keyword Titanic, the Titanic exists in the attribute value of attribute "NAME" in a corrupted database . If

Titanic exists in attribute value of entity set "MOVIE", it must be appeared in the entity set "MOVIE" in

corrupted database .

Step3: Similarity score

Structured robustness algorithm by cheng et al [1] calculates the SR score based on the top K result entities. The

result lists are attribute values and we corrupt only the top-K entity results of the original data set. The re-

ranking of the results will be done and they are moved to top answer lists as the top-K answers for the corrupted

versions of DB.

 Some of the statistical properties are used in the algorithms. These properties consist about the query

terms or attributes values over the whole content of DB. Such statistics are the number of occurrences of a query

term in all attributes values of the DB or total number of attribute values in each attribute and entity set. These

statistics are stored in metadata M, and inverted index I.

Algorithm: Structured robustness algorithm (corrupt top results)

Inputs: query Q, top K result list L of query Q, ranking function g, metadata M, Inverted Indexes I, Number of

corruption iterations N.

Outputs: SR scores for a query Q.

(1) Let the SR score equal to 0, SR 0

(2) For 1 to all the number of iterations N ,

 i = 1 N DO

(3) Copying the corrupted lists ,and statistical properties M and I,

 I; M; L.

(4) For each result R in ranking list L DO.

(5) For each attribute value A in R DO.

(6) A; copying the attribute values into corrupted database.

(7) For each keyword W of a query Q DO.

(8) Compute # of W in . Hash set is used for storing the attribute values

 and keywords of a query are both introduced into hash set for corrupted database DB'.

(9) IF # of W varies from .and A then . If the values of attributes different from original and corrupted DB

(10) Update .,M' and entry of the keyword W in ;

(11) ADD .to ., Add to ;

(12) Rank using ranking function g, which returns L, based on , ;

(13) SR+ = sim(L,); Structure robustness score is the similarity score of the result lists L and by spearman

correlation.

(14) RETURN SR SR/N, average score over N rounds.

(15) END.

International Journal of New Innovations in Engineering and Technology

Volume 3 Issue 3 – July 2015 73 ISSN : 2319-6319

Fig1. Block diagram for hard keyword query

III. EXPERIMENT AND RESULTS

The performance of the retrieval of data from the requested queries on the data set, by searching with noise and

searching without noise. The time taken for system to return the information against particular queries are

plotted and verified

3.1Searching without noise against runtime

Table 1 Queries run time tabulated for search without noise

 Fig 2 Searching without noise against runtime

Some queries are tested against the running time in form of Nano seconds. For the analysis of the performance

from the searching without noise sixteen queries are tabulated with their runtime which is tested.

INDEX QUERY RUNTIME

1 d009 47

2 hein moni 31

3 d0009 49

4 Sashi 36

5 d001 28

6 d005 46

7 40000 422

8 53126 281

9 Dimitri 172

10 senior eng 188

11 Mohan 172

12 Mansur 176

13 Msuda 172

14 17-03-1985 187

15 Staff 172

16 Maja 313

International Journal of New Innovations in Engineering and Technology

Volume 3 Issue 3 – July 2015 74 ISSN : 2319-6319

3.2 Searching with noise against runtime
Table 2 Queries run time tabulated for search without noise

 Fig 3 Searching
with noise against runtime

 Fig 4 With and without noise search run time processing

IV. CONCLUSION AND FUTURE WORK

Keyword queries over Databases are sometimes known for difficulty because of the less specific answers for the

queries. In order to find the difficulty of keyword query we establish prediction of these queries. The main aim

of this is to ensure effectiveness and also enhancement of the answers for the difficult queries.

 The problem of level of hardness of a query therefore can be decreased by robustness principle. We

implement a framework which consists of structure robustness algorithm to show the specific ranking by using

similarity scores.

INDEX QUERY RUNTIME

1 d009 28

2 hein moni 52

3 d0009 16

4 Sashi 25

5 d001 24

6 d005 24

7 40000 176

8 53126 265

9 dimitri 156

10 senior eng 170

11 mohan 171

12 mansur 172

13 msuda 171

14 17-01-1985 172

15 Staff 172

16 Maja 219

International Journal of New Innovations in Engineering and Technology

Volume 3 Issue 3 – July 2015 75 ISSN : 2319-6319

 If a keyword is found in documents which are ranked according to the similarity scores, the same

keyword can be found in lower documents according to the probability. So the same keyword found in lower

documents can be produced resulting in ambiguity. So depending on the similarity scores ambiguity can be

reduced by some metrics which can be developed in the future.

REFERENCES

[1] Shiwen Cheng, Arash Termehchy, and Vagelis Hristidis Efficient Prediction of Difficult Keyword Queries over Databases IEEE

transactions on knowledge and data engineering volume 26, no 4, june 2014

[2] Y. Zhao, F. Scholer, and Y. Tsegay, “Effective pre-retrieval query performance prediction using similarity and variability evidence,”

in Proc. 30th ECIR, Berlin, Germany, 2008.
[3] Y. Zhou and W. B. Croft, “Query performance prediction in web search environments,” in Proc. 30th Annual. Int. ACM SIGIR, New

York, NY, USA, 2007.

[4] S. C. Townsend, Y. Zhou, and B. Croft, “Predicting query performance,” in Proc. SIGIR’02, Tampere, Finland.
[5] Y. Zhou and B. Croft, “Ranking robustness: A novel framework to predict query performance,” in Proc. 15th ACM Int. CIKM,

Geneva, Switzerland, 2006.

[6] A. Trotman and Q. Wang, “Overview of the INEX 2010 data centric track,” in 9th Int. Workshop INEX 2010,
[7] V. Ganti, Y. He, and D. Xin, “Keyword++: A framework to improve keyword search over entity databases,” in Proceedings of VLDB

Endowment, Singapore.

[8] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IRstyle keyword search over relational databases,” in Proceedings of

29th VLDB Conf., Berlin, Germany, 2003.

[9] N. Sarkas, S. Paparizos, and P. Tsaparas, “Structured annotations of web queries,” inProc. 2010 ACM SIGMOD Int. Conf. Manage.

Data, Indianapolis, IN, USA.
[10] Arnab Nandi, H. V. Jagadish "Assisted Querying using Instant-Response Interfaces".

