

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 16 ISSN : 2319-6319

Comparison of Two Way Join Algorithms

used in MapReduce Frame work for handling

BigData

Suren kumar Sahu

Department of Computer Science and Engineering

Gandhi Engineering College,Bhubaneswar

Lambodar Jena

Department of Computer Science and Engineering

Gandhi Engineering College,Bhubaneswar

Santosh Satapthy

Department of Computer Science and Engineering

Gandhi Engineering College,Bhubaneswar

S.Gayatri Dora

Department of Computer Science and Engineering

 Regional Institute of Education,Bhubaneswar

Abstract-Due to the advent of new technologies, devices, and communication means like social networking sites, the

amount of data produced by mankind is growing rapidly every year. The amount of data produced by us from the

beginning of time till 2003 was 5 billion gigabytes. A vast amount of research going on into how best to handle and

process huge amounts of data which is generated by different media and social networks. One such idea for

processing enormous quantities of data is Google’s Map/Reduce. MapReduce is the heart of Hadoop. It is this

programming paradigm that allows for massive scalability across hundreds or thousands of servers in a Hadoop

cluster. The MapReduce concept is fairly simple to understand for those who are familiar with clustered scale-out

data processing solutions. The MapReduce framework is increasingly being used widely to analyze large volumes of

data. One of the techniques that framework is join algorithm. Join algorithms can be divided into two groups:

Reduce-side join and Map-side join. The aim of our work is to compare existing join algorithms which are used by

the MapReduce framework. We have compared Reducer-side merge join and Map-side replication-join in terms of

pre-processing, the number of phases involved, whether it is sensitive to data skew, whether there is need for

distributed Cache, memory overflow.

Key Words: Join algorithms, MapReduce, optimization.Semi join,Bloom Filter,Hadoop

I. INTRODUCTION

Map/Reduce[1] was first introduced by Google engineers - Jeffrey Dean and Sanjay Ghemawat [9]. It was

designed for and is still used at Google for processing large amounts of raw data (like crawled documents and

web-request logs) to produce various kinds of derived data (like inverted indices, web-page summaries, etc.). It

isa simple yet powerful framework for implementing distributed applications without having extensive prior

knowledge of the intricacies involved in a distributed system. It is highly scalable and works on a cluster of

commodity machines with integrated mechanisms for fault tolerance.Data-intensive applications include large-

scale data warehouse systems, cloud computing, data-intensive analysis. These applications have their own

specific computational workload. For example, analytic systems produce relatively rare updates but heavy select

operation with millions of records to be processed, often with aggregations.
Since its inception at Google, Map/Reduce has found many adopters. Among them, the prominent one is the

Apache Software Foundation, which has developed an Open-Source version of the Map/Reduce framework
called Hadoop [2]. Hadoop boasts of a number of large web-based corporates like Yahoo, Facebook, Amazon,
etc., that use it for various kinds of data-warehousing purposes. Facebook for instance, uses it to store copies of
internal logs and uses it as a source for reporting and machine learning. See [4] for other companies that use
Hadoop. Applications for large-scale data analysis use such techniques as parallel DBMS, MapReduce (MR)
paradigm, and columnar storage. Applications of this type process multiple data sets. This implies need to
perform several join operation. It’s known join operation is one of the most expensive operations in terms both I /

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 17 ISSN : 2319-6319

O and CPU costs. Join algorithms is not directly supported in MapReduce. There are some approaches to solve
this problem by using a high-level language PigLatin, HiveQL for SQL queries or implementing algorithms from
research papers. The aim of this work is to generalize and compare existing equi-join algorithms with some
optimization techniques.

II. JOIN ALGORITHMS AND OPTIMIZATION TECHNIQUES

In this section we consider various techniques of two-way joins in MapReduce framework. Join algorithms can
be divided into two groups: Reduce-side join and Map-side join. The pseudo code presented in Listings, where R
– right dataset, L –left dataset, V – line from file, Key – join key, that was parsed from a tuple, in this context
tuple is V.

2.1 Two-Way Joins

2.1.1 Reduce-Side join

Reduce-side join is an algorithm which performs data pre-processing in Map phase, and direct join is done during
the Reduce phase. Join of this type is the most general without any restriction on the data. Reduce-side join is the
most time-consuming, because it contains an additional phase and transmits data over the network from one phase
to another. In addition, the algorithm has to pass information about source of data through the network. The main
objective of the improvement is to reduce the data transmission over the network from the Map task to the
Reduce task by filtering the original data through semi-joins. Another disadvantage of this class of algorithms is
the sensitivity to the data skew, which can be addressed by replacing the default hash partitioner with a range
partitioner.

There are three algorithms in this group:

 General reducer-side join

 Optimized reducer-side join

 Hybrid Hadoop join

General reducer-side join is the simplest one. The same algorithms are called Standard Repartition Join in [6].
The abbreviation is GRSJ and pseudo code is presented below:

General reducer-side join:

--
Map (K: null, V from R or L)

 Tag = bit from name of R or L;

 emit (Key, pair(V,Tag));

Reduce (K’: join key, LV: list of V with key K’)

create buffers B r and B l for R and L;

for t in LV do

 add t.v to B r or B l by t.Tag;

for r in B r do

for l in B l do

 emit (null, tuple(r.V,l.V));

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 18 ISSN : 2319-6319

Figure-1. Reduce Side Join - Two Way

This algorithm has both Map and Reduce phases. In the Map phase, data are read from two sources and tags are
attached to the value to identify the source of a key/value pair. As the key is not effecting by this tagging, so we
can use the standard hash partitioner. In Reduce phase, data with the same key and different tags are joined with
nested-loop algorithm. The problems of this approach are that the reducer should have sufficient memory for all
records with a same key; and the algorithm sensitivity to the data skew.

2.1.2 Map-Side join

Map-side join is an algorithm without Reduce phase. This kind of join can be divided into two groups. First of
them is partition join, when data previously partitioned into the same number of parts with the same partitioner.
The relevant parts will be joined during the Map phase. This map-side join is sensitive to the data skew. The
second is in memory join, when the smaller dataset send whole to all mappers and bigger dataset is partitioned
over the mappers. The problem with this type of join occurs when the smaller of the sets cannot fit in memory.

There are three methods to avoid this problem:

 JDBM-based map join,

 Multi-phase map join,

 Reversed map join

Limitation of Map-Side Join:

Limitation Why

All datasets must be sorted using the same comparator The sort ordering of the data in each dataset must be

identical for datasets to be joined.

All datasets must be partitioned using the same

partitioner.

A given key has to be in the same partition in each

dataset so that all partitions that can hold a key are

joined together.

The number of partitions in datasets must be identical A given key has to be in the same partition in each

 he dataset so that all partitions that can hold a

key are joined together.

2.1.3 Broadcast Join

Broadcast Join was studied by Blanas et. al. in [6]. If one of the datasets is very small, such that it can fit in
memory, then there is an optimization that can be exploited to avoid the data transfer overhead involved in
transferring values from Mappers to Reducers. This kind of scenario is often seen in real-world applications. For

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 19 ISSN : 2319-6319

instance, a small users database may need to be joined with a large log. This small dataset can be simply
replicated on all the machines. This can be achieved by simply using -files or -archive directive to send the file to
each machine while invoking the Hadoop job. Broadcast join is a Map-only algorithm.

Map Phase

The Mapper loads the small dataset into memory and calls the map function for each tuple from the bigger
dataset. For each (key, value), the map function probes the in- memory dataset and finds matches. This process
can be further optimized by loading the small dataset into a Hashtable. It then writes out the joined tuples. The
below shown configure function is part of the Mapper class and is called once for every Mapper. The below code
reads the ‘broadcasted’ file and loads the same into an in- memory hash table.

Loading the small dataset into a Hash table:

public void configure (JobConf conf) {

//Read the broadcasted file

T1 = new File (conf . get (" broadcast . file "));

//Hashtable to store the tuples

ht = new HashMap < String , ArrayList < String > >() ;

BufferedReader br = null;

String line = null;

try{

br = new BufferedReader (new FileReader (T1));

while((line = br . readLine ()) !=null)

{

String record [] = line . split ("\t" , 2) ;

if(record . length == 2)

{

 //Insert into Hashtable

if(ht . containsKey (record [0]))

{

 ht . get (record [0]) . add (record [1]) ;

}

else

{

ArrayList < String > value = new ArrayList <

String >() ;

value . add (record [1]) ;

ht . put (record [0] , value);

}

}

}

}

catch(Exception e)

{

e. printStackTrace () ;

}

}

--
The next piece of code is the actual map function that receives the records from the HDFS and probes the
HashTable containing the tuples from the broadcasted file. Notice that it takes care of duplicate keys as well.

Broadcast Join Map Function:

public void map(LongWritable lineNumber , Text value ,

OutputCollector < Text , Text > output , Reporter

reporter)

throws IOException {

String [] rightRecord = value . toString () . split ("\t" ,2);

if(rightRecord . length == 2)

{

for(String leftRecord : ht . get (rightRecord [0]))

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 20 ISSN : 2319-6319

{

 output . collect (new Text (rightRecord [0]) , new Text

 (leftRecord + "\t" + rightRecord [1]));

}

}

}

Broadcast Join benefits from the fact that it uses a small ‘local’ storage on the individual nodes instead of the
HDFS. This makes it possible to load the entire dataset into an in-memory hash table, access to which is very fast.
But on the down side, it will run into problems when both the datasets are large and neither of them can be stored
locally on the individual nodes.

III. SEMIJOIN

Sometimes a large portion of the data set does not take part in the join. Deleting of tuples that will not be used in
join significantly reduces the amount of data transferred over the network and the size of the dataset for the join.
This preprocessing can be carried out using semi-joins by selection or by a bitwise filter.

However, these filtering techniques introduce some cost (an additional MR job), so the semi-join can improve the
performance of the system only if the join key has low selectivity. There are three ways to implement the semi-
join operation:

 a semi-join using bloom-filter,

 semi-join using selection,

 an adaptive semi-join.

Bloom-filter is a bit array that defines a membership of element in the set. False positive answers are possible, but
there are no false-negative responses in the solution of the containment problem. The accuracy of the containment
problem solution depends on the size of the bitmap and on the number of elements in the set. These parameters
are set by the user. It is known that for a bitmap of fixed size m and for the data set of n tuples, the optimal
number of hash functions is k=0.6931*m/n. In the context of MapReduce, the semi-join is performed in two jobs.
The first job consists of the Map phase, in which keys from one set are selected and added to the Bloom-filter.
The Reduce phase combines several Bloom-filters from first phase into one. The second job consists only of the
Map phase, which filters the second data set with a Bloom-filter constructed in previous job.

The accuracy of this approach can be improved by increasing the size of the bitmap. However in this case, a
larger bitmap consumes more amounts of memory. The advantage of this method is its the compactness. The
performance of the semi-join using Bloom-filter highly depends on the balance between the Bloom-filter size,
which increases the time needed for its reconstruction of the filter in the second job, and the number of false
positive responses in the containment solution. The large size of the data set can seriously degrade the
performance of the join.

Semi-join using Bloom Filter

Job 1: construct Bloom filter

 Map (K:null, V from L)

 Add Key to BloomFilter Bl

 close() //for Map phase

 emit(null, Bl);

 Reduce (K’: key, LV) //only 1 Reducer

 for l in LV do

 union filters by operation Or

 close() // for Reduce phase

 write resulting filter into file;

Job 2: filter dataset

 init() //for Map phase

 read filter from file in Bl

 Map (K:null, V from R)

 if (Key in Bl) then

 emit (null, V);

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 21 ISSN : 2319-6319

Job 3: do join with L dataset and filtered dataset from Job 2.

Semi join with selection:

Job 1: find unique keys

 Map (K:null, V from L)

 Create HashMap H;

 if (not Key in H) then

 add Key to H;

 emit (Key, null);

 Reduce (K’: key, LV) //only one Reducer

 emit (null,key);

Job 2: filter dataset

 init() //for Map phase

 add to HashMap H unique keys from job 1;

 Map (K:null, V from R)

 if (Key in H) then

 emit (null,V);

Job 3: do join with L dataset and filtered dataset from Job 2.

Semi-join with selection extracts unique keys and constructs a hash table. The second set is filtered by the hash
table constructed in the previous step. In the context of MapReduce, the semi-join is performed in two jobs.
Unique keys are selected during the Map phase of the first job and then they are combined into one file during the
Map phase. The second job consists of only the Map phase, which filters out the second set. The semi-join using
selection has some limitations. Hash table in memory, based on records of unique keys, can be very large, and
depends on the key size and the number of different keys.

 The Adaptive semijoin is performed in one job, but filters the original data on the flight during the join.
Similar to the Reduce-side join at the Map phase the keys from two data sets are read and values are set equal to
tags which identify the source of the keys. At the Reduce phase keys with different tags are selected. The
disadvantage of this approach is that additional information about the source of data is transmitted over the
network.

Adaptive Semijoin

--
Job 1: find keys which are present in two datasets

 Map (K:null, V from R or L)

 Tag = bit from name of R or L;

 emit (Key,Tag);

 Reduce (K’: join key,

 LV: list of V with key K’)

 Val = first value from LV;

 for t in LV do

 if (not Val==Val2) then

 emit (null, K’);

Job 2: before joining it is necessary to filter the smaller dataset

 dataset by keys from the Job 1 that willbe loaded into hash map.

 Then the bigger dataset is joined with filtered one

VI. EXPERIMENTS AND ANALYSIS

Dataset

Data are the set of tuples, which attributes are separated by a comma. Tuple is split into a pair of a key and a
value, where value is the remaining attributes. Generation of synthetic data was done as in [4]. Join keys are
distributed randomly except experiment with the data skew.

Cluster configuration

HYB 1 data 2 - yes - Part size is large Hash

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 22 ISSN : 2319-6319

MSPJ 2 data 1 - yes - Part size is large Hash

Cluster consists of three virtual machines, where one of them is master and slave at the same time, the remaining
two are the slaves. Host configuration consists of 1 processor, 512 mb of memory for nodes, 5 gb is the disk size.
Hadoop 20.203.0 runs on Ubuntu 10.10.

The General Case:

The base idea of this experiment is to compare executions time of different phases of various algorithms. Some
parameters are fixed: the number of Map and Reduce tasks is 3, the input size is 10^ 4 x10^ 5 and 10^ 6 x10^ 6
tuples.

Performance of two-way joins on increasing input data size

A series of experiments were conducted to compare the runtime and scalability of the various algorithms. The
first of these involved running the three two-way algorithms mentioned earlier on increasing data sizes .

Both datasets involved in the joins had the following characteristics -

• Same number of tuples

• Same key space

• #keys = 1/10 #tuples

We tested on two kinds of key distributions as shown in Figure 2 and Figure 3. In the case of skewed data, one of
the datasets had a key that was repeated 50% of the times. Which means that given n rows, n / 2 of them were the
same key. The other dataset had uniform key distribution

Concentrating first on the Uniform Key Distribution graph (Figure 2), it can be seen that all the three algorithms
gave comparable numbers at lower input data sizes. But Map-side join always performed the best, even with large
input datasets. Broadcast join deteriorated the fastest as the data size increased. This is because a larger file had to
be replicated across all the machines in the cluster as the input size increased. Figure 3 shows something
interesting. Map-side join gave a worse time than the other two algorithms for the input with 5 million rows when
then input dataset had skewed key distribution. This can be attributed to the unequal partitioning that will occur
due to the skew.

Apart from testing for runtimes, we also checked for the amount of data transferred over the network from the
machines running the Reduce tasks. A simple number like the number of bytes transferred might not be very
meaningful. Hence we took the ratio as

We call this the Data Shuffle ratio. This ratio is interesting because it gives an idea of how well Hadoop achieves
data locality and whether it improves with bigger data sizes. Table 1 and Table 2 show the actual run-times of the
different algorithms shown in Figure 2 and Figure 3. Also given are the number of bytes shuffled across machines
from the Map phase to the Reduce phase in the Reduce-Side Join. Note that Map-Side Join and Broadcast Join do
not have a reduce side and hence no data is shuffled across machines between the Map phase and the Reduce
phase. The sixth column shows the time taken for pre-processing in the case of the Map-Side Join algorithm.

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 23 ISSN : 2319-6319

Figure-2. Uniform Key Distribution

Figure-3. Skewed Key Distribution

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 24 ISSN : 2319-6319

Table -1 Uniform Key Distribution

Table -2 Skewed Data Distribution

There are two main things worth noticing in Table 1 and Table 2. The first is that the Data Shuffle ratio remains
around 1.14 for both uniform and skewed key distribution. This is because as the data size increases, Hadoop is
able to better manage data distribution and data locality. The other thing is that though Map-Side performed best
most of the times, it took an average time of 50.29 seconds (uniform key distribution).and 49.57 seconds (skewed
key distribution) for the pre-partitioning phase. This may not seem a lot, but is likely to be quite high if the input
datasets are much larger than the ones used in this experiment.

Semi-Join Comparisions:

The main idea of this experiment is to compare different semi-join algorithms. These parameters are fixed: the
number of Map and Reduce tasks is 3, the bitmap size of Bloom-filter is 25*10 5 , the number of hash-functions
in Bloom-filter is 173, built-in Jenkins hash algorithm is used in Bloom-filter. Adaptive semi-join (ASGRSJ) does
not finish because of memory overflow. The abbreviation of Bloom-filter semi-join for GRSJ is BGRSJ. The
abbreviation of semi-join with selection for GRSJ is SGRSJ respectively.

Figure-4. Comparison of different semi-join implementations

 International Journal of New Innovations in Engineering and Technology

Volume 4 Issue 2 – January 2016 25 ISSN : 2319-6319

V. CONCLUSION

We explored the practicality of using Map/Reduce for joining datasets and found it quite easy to use and
implement over different sizes of cluster. In this work we found some quite interesting results from our
experiments on Join algorithms using Map/Reduce. Even though our clusters were of relatively small sizes, we
could notice from our experiments how the Hadoop framework exploited the cluster architecture when more
nodes were added (as was seen with the Data Shuffle ratio that remained the same throughout our experiments).
This gave us a first-hand feel of why Hadoop seems to be enjoying such a high popularity among data
warehousing specialists. We found that Map-Side joins performs the best when the datasets have relatively
uniform key distribution. But this comes at the cost of a pre-processing step. Broadcast Join is a better option
when one of the datasets is much smaller compared to the other and the dataset is small enough to be easily
replicated across all the machines in the cluster. It deteriorated the fastest when the input data size was increased.
Reduce-Side Join gave almost the same performance for both uniform and skewed key distributions whereas
Map-Side Join seemed to give slightly unpredictable results with skewed data.

 In this work we describe the state of the art in the area of massive parallel processing, presented our

comparative study of these algorithms reduced side join,map side join ,broad cast join and semi-join.In future

work multi way join can be tested and analysed using more number of Hadoop clusters.

REFERENCES

[1] Apache cassandra.

[2] Apache hadoop. Website. http://hadoop.apache.org.

[3] Cloudera inc. http://www.cloudera.com.

[4] Hadoop wiki - poweredby. http://wiki.apache.org/hadoop/PoweredBy.

[5] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin. Hadoopdb: an architectural hybrid of mapreduce and
dbms Technologies for ana lytical workloads. Proc. VLDB Endow., 2(1):922–933, 2009.

[6] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A comparison of join algorithms for log processing in
mapreduce. In SIGMOD ’10:Proceedings of the 2010 international conference on Management of data, pages 975–986, New
York, NY, USA, 2010. ACM.

[7] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope: easy and efficient parallel processing of
massive data sets. Proc.VLDB Endow., 1(2):1265–1276, 2008.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a
distributed storage system for structured data. In OSDI ’06: Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, pages 15–15, Berkeley, CA,USA, 2006. USENIX Association.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51(1):107–113, 2008.

