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I. INTRODUCTION 

In a letter to L`Hopital in 1695 Leibnitz raised the following question: "Can the meaning of derivatives with 

integer order be generalized to derivatives with non-integer orders?" L`Hopital was somewhat curious about that 

question and replied by another question to Leibniz: "What if the order will be 1/2?" Leibnitz in a letter dated 

September 30, 1695 the exact birthday of the fractional calculus! replied: "It will lead to a paradox, from which 

one day useful consequences will be drawn." The question raised by Leibnitz for a fractional derivative was an 

ongoing topic for more than 300 years. Many known mathematicians contributed to this theory over the years. 

After RIEMANN-LIOUVILLE and GRUNWALD -LETNIKOV derive their definition respectively. 

aDt
α
f(t) =  

aDt
α
f(t) =  

[x]-integer part of x 

II. A THOUGHT EXPERIMENT 

From an aircraft, we can see the city roads and observe the vehicular traffic movement. The vehicle seems to 

move in a straight line. Therefore, as an observer, we draw the velocity curve by simple one order integer  

Figure 1. Macroscopic and microscopic view of moving vehicles on road 
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derivative of displacement and find that it maps a straight line. In FIGURE1, the pair of straight lines gives the 

velocity trajectory of the upstream vehicle and downstream vehicle, as observed in macroscopic scale. The same 

vehicle when looked with enlarged view tells us its continuous movement but to avoid road heterogeneity it 

travels in zigzag fashion. The curve in the lower frame of FIGURE1 maps this picture. Here the scale is 

enlarged. The velocities for upstream and downstream vehicles are not pair of straight lines, but follow a 

continuous, nowhere differentiable curve. So will the dx/dt give the true picture of velocity or will it be 

d1+αx/dt1+α, where 0 < α < 1, give the representation of the actual zigzag pattern is the thought experiment. 

Now the question about the dimensions of velocity, in the thought experiment when defined as fractional 

derivative of displacement, is the matter of another thought. In the present understanding, as per uniform time 

scales, the quantity dx/dt is velocity, and d
2
x/dt

2
 is the acceleration; however, the quantification of 

d1:23x/dt1:23 is hard to visualize. This fractional differentiation is in between velocity and acceleration, perhaps 

a velocity in some transformed time scale, which is non-uniform enriching thought for physical understanding 

of fractional quantities. The nature of zigzag pattern shown is somewhat called fractal curve, actually a 

continuous and nowhere differentiable function. The relation of fractal dimensions and fractional calculus is an 

evolving field of science at present. The macroscopic view presented above gives a thought of explanation of 

discontinuity and singularity formations in nature, in classical integer order calculus. Can fractional calculus be 

an aid for explanation of discontinuity formation and singularity formation is an enriching thought experiment. 

 

III. APPLICATIONS OF FRACTIONAL CALCULUS-SOME 

CASE STUDIES 

1. Nuclear Reactor Neutron Flux Description 

2. Battery as Fractional Order System 

3. Diffusion Model in Electrochemistry 

4. Fractional-order multipoles in electromagnetism 

5. Tensile and Flexural Strength of Disorder Materials 

6. Modeling the Cardiac Tissue Electrode Interface Using Fractional Calculus 

7. Application of Fractional Calculus to the sound Waves Propagation        

    in Rigid Porous  materials     

8. Application of fractional calculus in the theory of viscoelasticity 

9. Fractional differentiation for edge detection 

10. Application of Fractional Calculus to Fluid Mechanics 

 

1. Nuclear Reactor Neutron Flux Description [2] 

The neutron balance description in nuclear reactor is defined by transport theory. The basic transport equations 

are then approximated by several coupled differential equations. One of the simplified approximation of the 

reactor representation given to engineers is the neutron diffusion equation sets in multi-energy group or single-

energy group. In all these diffusion equations, the leakage term has Ficks law of diffusion, where the neutron 

flux is assumed to be a point quantity. For larger reactor representation, several of these diffusion equations are 

formed and modelled by region to region coupling coefficients. Engineering science then proceeds on these 

approximates to obtain reactor transfer function model, and then various control system analyses are done. For 

complex systems, the integer models of the reactor may not suffice and thus a fractional order model for 

obtaining flux profile or kinetics may describe the complex reality better. The argument is similar to that 

described for heat transfer model [chapter2.4 in 2] where distributed and complex parametric spreads and size 

factor are described better by fractional transient heat transfer equation. 

 

2. Battery as fractional order system [2] 

Electrolytic cell is known to exhibit fractional behaviour, typically of half order. The fractional system is an 

electrode - electrolyte interface, where diffusion takes place. This diffusion process is called the Warburg 

impedance (or a constant phase CPE element). The two phases of battery operation is considered: charging and 

discharging phases. The discharge phase is load drawing (usage).The charging phase takes place from t=a=0 to 

t=c, with actual current owing i.e. charging occurring for   . 
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Later the load drawing usage phase .FIGURE 2.gives diagram of battery circuit charging, discharging phase 

circuit and the charge current profile. Here constant current charging is assumed. The block W represents 

Warburg impedance of electrode – electrolyte interface. 

 

 

 

Figure 2. Battery charging, discharging circuit, and charging current profile 

 

3. Diffusion Model in Electrochemistry [2] 

One of the important studies in electro chemistry is the determination of concentration of analysed electro active 

species, near the electrode surface. The characteristic describing function is found experimentally as m(t) = 0Dt-

0.5 i(t); which is the fractional(half) integral of the current. Then the subject of interest is to find surface 

Concentration Cs(t) of the electro active species, which can be evaluated as 

Cs(t) = C0 - k(0Dt-0:5 i(t)) ;      where k = 1/(nAF√D), 

Here A being electrode area, n number of electrons involved in the reaction, D is the diffusion coefficient and F 

is the Faraday constant.C0 is the uniform concentration of the electro active species throughout the electrolyte 

medium, at the initial equilibrium situation characterized by constant potential at which the electrochemical 

reaction is possible. 

The relationship is derived from the classical diffusion equation 

 = D , for (0 < x < ∞) and t > 0 

With C(∞; t) = C0; and C(x, o) = C0; and x=0 =  

(similar equation for lossy semi-infinite transmission line and heat flux Studies) 

Some interesting points are listed below: 

1) m(t) is characteristic intermediate between the current i(t) and the charged passed q(t).The charge passed is an 

integral    

q(t) = 0Dt
-1

 i(t).This hints at non conservation law of charges, as m(t) manifests 

2) The kinetics of the electrode process and the surface property of the electrode (alluding to heterogeneity) are not 

assumed. 

3) Instead of classical diffusion equation it is possible to model with fractional order  diffusion equation as: 

0Dt
-α

 C(x; t) = D  with 0 < α < 1 

then the surface concentration will be related to mα(t) =0 Dt
α/2

 i(t) 
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4. Fractional-order multipoles in electromagnetism. [4] 

It is well known that the axial multipole expansion of the electrostatic potential of electric charge distribution in 

three dimensions is 

           ϕn(r) = Pn(cosθ)   (1)    

where q is the so-called electric monopole moment, ε is constant Permittivity of the homogeneous isotropic 

medium, 

r=  Pn(cosθ)  is the Legendre function of integer order n .In particular, the 

electrostatic potential functions for monopole (2
0
), dipole (2

1
) and quadrupole (2

2
) are, respectively, given by 

ϕ0(r) =      

ϕ1(r) =     

ϕ2(r) =  P2(cosθ)  (2)    

Engheta [3] generalized the idea of the integer-order multipoles related to powers of 2 to the fractional-order 

multipoles that are called 2-poles.He obtained the potential function for 2αpoles (0 < α < 1) along the z-axis, in 

terms of the Riemann-Liouville fractional derivatives in the form 

ϕ2α(r) = Pα(- )-∞Dz
α
( ), r=  (3) 

where l is a constant with dimension of length so that the usual dimension of the resulting volume charge 

density is Coulomb/m3. Evaluating the fractional derivative (3) yields the following result for the electrostatic 

potential: 

ϕ2α(r) = Pα(- )     (4) 

where Pα(x) is the Legendre function of the first kind and of fractional degree α When α = 0, α = 1 and α = 2, 

the potentials (4) reduce to those given by (2). 

 

5. Tensile and Flexural Strength of Disorder Materials [5] 

One particular focus of study in the mechanics of solids is the apparent 'size effect' that occurs in some building 

materials, particularly those that are aggregates, such as concrete. Although classical solid mechanics dictates 

that the strength of a material is largely (if not completely) determined by the material properties of that 

material, and so that scaling should not present a change in relative strength. The size effect however has been a 

demonstration of how aggregate materials, namely concrete do indeed have strength dependent on the scale of 

the structure and thus do not follow the rules of classical (and dare i say integer-order) solid mechanics. In [5], 

the authors discuss how the microstructure of such aggregate materials have been in the past successfully 

modelled by fractal sets rather than traditional geometric sets. The dimension of the fractal sets used to model 

these structures is also of primary importance as it determines the scaling, and ultimately the sizing effects for 

that particular material. Fractional calculus is deemed appropriate and necessary for the study of these models as 

ordinary integer order calculus is ill-equipped to differentiate the fractal functions at work. 

The authors take this contention to use with a tensile and flexural analysis of a 2D section of concrete. From 

experimentally tested results of the composition and stress reactions of concrete, they determine that the 

microstructure may be approximated by a fractal Cantor set of dimension α= 0.5. They compute through use of 

fractional calculus the tensile and flexural strength of their specimen, and indeed find fractal dimension related 

dependencies on size that simply do not agree with a classical analysis. These formulas are shown below. 

(σu)tensile = b
-(1-α)    

(5)
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(σu)flexural = 2 ( ) (σu)tensile   (6) 

It is the hope of the authors of [5] that their study into the strength of materials with microstructures easily 

approximated by fractal sets will open the door to a more mathematically rigorous formulation of stressand load 

relationships. In their own words, "Here, on the one hand, we demonstrate one origin of a stress concentration 

on fractal sets, viz, the heterogeneity of the aggregates in the concrete. On the other hand, given the existence of 

the concentration of the stress on a fractal set, we develop a way to make first principle calculations of various 

strengths. For this purpose we use the concept of fractal integrals. We hope that these will pave the way for 

more general treatment of these questions." 

 

6. Modeling the Cardiac Tissue Electrode Interface Using Fractional Calculus[7] 

The tissue electrode interface is common to all forms of bio potential recording (e.g., ECG, EMG, EEG) and 

functional electrical stimulation (e.g., pacemaker, cochlear implant, deep brain stimulation). Conventional 

lumped element circuit models of electrodes can be extended by generalization of the order of differentiation 

through modification of the defining current-voltage relationships. Such fractional order models provide an 

improved description of observed bio electrode behaviour, but recent experimental studies of cardiac tissue 

suggest that additional mathematical tools may be needed to describe this complex system. 

 

7. Application of Fractional Calculus to the sound Waves Propagation in Rigid Porous Materials[8] 

The observation that the asymptotic expressions of stiffness and damping in porous materials are proportional to 

fractional powers of frequency suggests the fact that time derivatives of fractional order might describe the 

behaviour of sound waves in this kind of materials, including relaxation and frequency dependence. 

 

8. Application of fractional calculus in the theory of viscoelasticity [9] 

The advantage of the method of fractional derivatives in theory of viscoelasticity is that it affords possibilities 

for obtaining constitutive equations for elastic complex modulus of viscoelastic materials with only few 

experimentally determined parameters. Also the fractional derivative method has been used in studies of the 

complex moduli and impedances for various models of viscoelastic substances. 

 

9. Fractional differentiation for edge detection [10] 

In image processing, edge detection often makes use of integer-order differentiation operators, especially order 

1 used by the gradient and order 2 by the Laplacian. This paper demonstrates how introducing an edge detector 

based on non-integer (fractional) differentiation can improve the criterion of thin detection, or detection 

selectivity in the case of parabolic luminance transitions and the criterion of immunity to noise, which can be 

interpreted in term of robustness to noise in general. 

 

10. Application of Fractional Calculus to Fluid Mechanics [11] 

Application of fractional calculus to the solution of time-dependent, viscous-diffusion fluid mechanics problems 

are presented. Together with the Laplace transform method, the application of fractional calculus to the classical 

transient viscous-diffusion equation in a semi-infinite space is shown to yield explicit analytical (fractional) 

solutions for the shear stress and fluid speed anywhere in the domain. Comparing the fractional results for 

boundary shear-stress and fluid speed to the existing analytical results for the first and second Stokes problems, 

the fractional methodology is validated and shown to be much simpler and more powerful than existing 

techniques. 
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