

 International Journal of New Innovations in Engineering and Technology

Volume 5 Issue 1– May 2016 48 ISSN : 2319-6319

Multi-Way Join using Map Reduce for Big

Data Applications

Suren kumar Sahu

Department of Computer Science and Engineering

Gandhi Engineering College,Bhubaneswar,Odisa,India,

Sarbajit Chhualsingh

Gandhi Engineering College,Bhubaneswar,Odisha,India

S.Gayatri Dora

Department of Computer Science

Regional Institute of Education,Bhubaneswar,Odisha,India

Abstract - Multi-way join is an important and frequently used operation for many big data applications including

data mining and knowledge discovery, Since join processing is expensive, mainly for large data sets, multi-way join is

a costly operation. When processing multi-way joins of big data, a natural join to ensure the reasonable response

time is parallel processing. As a parallel programming model, Map Reduce becomes the popular big data

programming model for its simplicity, flexibility, fault tolerance and scalability. In this paper we have tested multi-

way join using phases map side join and reduced side join.

Keywords: Bigdata, Map Reduce, Hadoop, Semi joins, partitioner,HDFS

I. INTRODUCTION

Join processing in Map Reduce [1] has attracted the attention of researchers in recent years. This is because

MapReduce does not support join operations directly, although it is a useful framework for large-scale data

analysis. In particular, joining multiple datasets in MapReduce has been a challenging problem because it may

amplify the disk and network overheads. Multiple datasets can be joined in the following two ways:

1. using a cascade of two-way (or smaller multi-way) joins and

2. with a single multi way join.

However, both methods have some drawbacks. A cascade of two-way joins has to write the intermediate join

results to the underlying distributed file system, which generally replicates multiple records to ensure high

availability and fault tolerance. To process multi way joins in a single Map Reduce job, the map output records

have to be replicated multiple times, instead of writing only the final join results to the distributed file system.

II. MAPREDUCE

2.1 MapReduce [1] is Google's programming model for large-scale data processing, which is run on a

shared-nothing cluster. MapReduce liberates users from the responsibility of implementing parallel and

distributed processing features by providing them automatically. Thus, users only have to write MapReduce

programs with two functions: map and reduce. The map function takes a simple key/value pair as its input and it

produces a set of intermediate key/value pairs. The reduce function takes an intermediate key and a set of values

that correspond to the key as its input, and it generates the final output key/value pairs.

A MapReduce cluster comprises one master node and a number of worker nodes. When a MapReduce job is

submitted, the master node creates the map, reduces tasks, and assigns each task to idle workers. A map worker

reads the input split and executes the map function submitted by the user. The map output records are grouped

and sorted by the key and then stored in partitions for each reduce worker. A reduce worker reads its

corresponding partitions from all the map workers, merges the partitions, and executes the reduce function.

When all of the tasks are complete, the MapReduce job is finished.

Hadoop [9] is a popular open-source implementation of the Map Reduce framework. In Hadoop, the master

node is called the job tracker and the worker node is called the task tracker. Task trackers run one or more

 International Journal of New Innovations in Engineering and Technology

Volume 5 Issue 1– May 2016 49 ISSN : 2319-6319

mapper and reducer processes, which execute map and reduce tasks, respectively. The proposed method was

implemented using Hadoop, so the Hadoop terminology is used in the remainder of this paper.

2.2 Join Processing in Map Reduce

Join algorithms in Map Reduce are classified roughly into two categories: map-side joins and reduce-side joins

[10]. Map-side joins produce the final join results in the map phase and do not use the reduce phase. They do not

need to pass intermediate results from mappers to reducers, which means that map-side joins are more efficient

than reduce-side joins, although they can only be used in particular circumstances. Hadoop's map-side join [11],

referred to as the map-merge join [10], merges input datasets that are partitioned and sorted on the join keys in

the same manner, which is similar to the merge join in traditional DBMS. An additional MapReduce job is

required if the input datasets are not partitioned and sorted in advance. The broadcast join [12] distributes the

smaller of the input datasets to all of the mappers and performs the join in the map phase. This approach is

efficient only if the input dataset is small.

Reduce-side joins can be used in more general cases, but they are inefficient because large intermediate records

are sent from mappers to reducers. The repartition join [12] is the most common join algorithm in MapReduce,

but all of the input records have to be sent to reducers, including redundant records that are not relevant to the

join. This may lead to a performance bottleneck. The semi join in MapReduce [12] works in a similar manner to

semi join in traditional DBMS. This approach may reduce the size of the intermediate results by filtering out the

unreferenced records with unique join keys. Therefore, it is efficient when small portions of records participate

in joins. However, the semijoin requires three MapReduce jobs, which means that the results of each job are

written and read in the next job. This incurs additional I/O overheads.

III. JOIN ALGORITHMS

Two-way Joins - Given two dataset P and Q, a two-way join is defined as a combination of tuples pЄP and qЄQ,

such that p.a = q.b. a and b are values from columns in P and Q respectively on which the join is to be done.

Please note that this is specifically an ‘equi-join’ in database terminology. This can be represented as-

Multi-way Joins - Given n datasets P1, P2... Pn, a multi-way join is defined as a combination of tuples

p1 ЄP1; p2 ЄP2,... pnЄ Pn, such that p1.a1 = p2.a2 =... = pn.an. a1, a2,... an are values from columns in P1,

P2,... Pn respectively on which the join is to be done. Notice once again that this is specifically an ‘equi-join’.

This can be represented as-

The algorithms thus described in this chapter have been divided into two categories-

1. Two-Way Joins - Joins involving only two tables

2. Multi-Way Joins - Joins involving more than two tables

3.1 Reduce-Side Join

In this algorithm, as the name suggests, the actual join happens on the Reduce side of the framework. The ‘map’

phase only pre-processes the tuples of the two datasets to organize them in terms of the join key.

3.1.1 Map Phase

The map function reads one tuple at a time from both the datasets via a stream from HDFS. The values from the

column on which the join is being done are fetched as keys to the map function and the rest of the tuple is

fetched as the value associated with that key. It identifies the tuples’ parent dataset and tags them. A custom

class called TextPair has been defined that can hold two Text values. The map function uses this class to tag

both the key and the value. The reason for tagging both of them will become clear in a while. Here is the code

for the map function.

void map(Text key , Text values ,

OutputCollector <TextPair, TextPair> output , Reporter reporter) throws IOException {

 International Journal of New Innovations in Engineering and Technology

Volume 5 Issue 1– May 2016 50 ISSN : 2319-6319

output.collect(new TextPair(key.toString (), tag),

new TextPair(values.toString (), tag));

}

Fig-1 Reduce-Side Join for Two way join

Fig-2 Reduce-side join for Multi-Way join

3.1.2 Partitioning and Grouping Phase

The partitioner partitions the tuples among the reducers based on the join key such that all tuples from both

datasets having the same key go to the same reducer .. The default partitioner had to be specifically overridden

to make sure that the partitioning was done only on the Key value, ignoring the Tag value. The Tag values are

only to allow the reducer to identify a tuple’s parent dataset.

int getPartition (TextPair key , TextPair value , int numPartitions) {

return (key.getFirst ().hashCode () & Integer.MAX_VALUE)% numPartitions ;

}

But this is not sufficient. Even though this will ensure that all tuples with the same key go to the same Reducer,

there still exists a problem. The reduce function is called once for a key and the list of values associated with it.

This list of values is generated by grouping together all the tuples associated with the same key (see section

2.4.6). We are sending a composite TextPair key and hence the Reducer will consider (key, tag) as a key. This

means, for eg., two different reduce functions will be called for [Key1, Tag1] and [Key1, Tag2]. To overcome

 International Journal of New Innovations in Engineering and Technology

Volume 5 Issue 1– May 2016 51 ISSN : 2319-6319

this, we will need to override the default grouping function as well. This function is essentially the same as the

partitioner and makes sure the reduce groups are formed taking into consideration only the Key part and

ignoring the Tag part.

Fig- 3 Custom Partitioning and Grouping

3.1.3 Reduce Phase

The reduce phase is slightly more involved than the two sided join. The Reducer as usual, gets the tuples sorted

on the (key, tag) composite key. All tuples having the same value for the join key, will be received by the same

Reducer and only one reduce function is called the job configuration, the Reducer dynamically creates buffers

to hold all but the last datasets. The last dataset is simply streamed from the file system. As a necessary evil,

required to avoid running out of memory, the buffers are spilled to disk if they exceed a certain pre-defined

threshold. This quite obviously will contribute to I/O and runtime.

Once the tuples for a particular key are divided as per their parent datasets, it is now a Cartesian product of these

tuples. Subsequently, the joined tuples are written to the output.

Advantages and Drawbacks

Advantages

 Joining in one go means no setting up of multiple jobs No intermediate results involved which could

lead to substantial space savings.

Disadvantages

 Buffering tuples can easily run in to memory problems, especially if the data is skewed

 If used for more than 5 datasets, its highly likely that the buffer will overflow.

Reduce-Side Cascade Join

This is a slightly different implementation of the Reduce-Side Join for Multi-Way joins. Instead joining all the

datasets in one go, they are joined two at a time. In other words, it is an iterative implementation of the two-way

Reduce-Side Join The implementation is the same as the Reduce-Side Join mentioned in section 3.2.1. The

calling program is responsible for creating multiple jobs for joining the datasets, two at a time. Considering n

tables, T1;T2;T3; ::;Tn, T1 is joined with T2 as part of one job. The result of this join is joined with T3 and so

on. Expressing the same in relational algebra –

Advantages and Drawbacks

Advantages

 Data involved in one Map/Reduce job is lesser than the algorithm mentioned in section 3.3.2. Hence

lesser load on the buffers and better I/O.

 Datasets of any size can be joined provided there is space available on the HDFS.

 International Journal of New Innovations in Engineering and Technology

Volume 5 Issue 1– May 2016 52 ISSN : 2319-6319

 Any number of datasets can be joined given enough space on the HDFS.

Disadvantages

 Intermediate results can take up a lot of space. But this can be optimized to some extent as explained in

the next section.

 Setting up the multiple jobs on the cluster incurs a non-trivial overhead.

3.2 Reduce-Side Cascade Join - Optimization

Simply joining datasets two at a time is very inefficient. The intermediate results are usually quite large and will

take up a lot of space. Even if these are removed once the whole join is complete, they could put a lot of strain

on the system while the cascading joins are taking place. Perhaps there is a way of reducing the size of these

intermediate results. There are two ways this can be achieved -

 Compressing the intermediate results

 Join the datasets in increasing order of the output cardinality of their joins, i.e., join the datasets that

produce the least number of joined tuples first, then join this result with the next dataset which will

produce the next lowest output cardinality.

Optimization using compression

Compressing the results will not only save space on the HDFS, but in case the subsequent join’s Map task needs

to fetch a non-local block for processing, it will also result in lower number of bytes transferred over the

network.

Optimization using Output Cardinality

Deciding the order of joining datasets using the output cardinality is more involved.

Lets consider two sample datasets –

Key Value

1 ABC

2 DEF

2 GHI

3 JKL

Table-1

 Table-2

The output of joining these two datasets will be -

Key Table -1 Table -2

1 ABC LMN

2 DEF PQR

2 GHI PQR

3 JKL STU

3 JKL XYZ

Table-3

The thing to notice is that the output will have

number of rows. where Tm(Kn) represents the number of tuples in table Tm having the

key Kn. In our case, it will be

Hence, if we find out the number of keys in each dataset and the corresponding number of tuples associated with

each key in those datasets, we can find the number of output tuples in the join, or in other words, the output

Key Value

1 LMN

2 PQR

3 STU

3 XYZ

 International Journal of New Innovations in Engineering and Technology

Volume 5 Issue 1– May 2016 53 ISSN : 2319-6319

cardinality of the joined dataset. This can be very easily done as part of a pre-processing step.. To accomplish

this, output cardinalities are found pair-wise for all datasets at pre-processing time and stored in files. When the

join is to be executed, the datasets with the lowest output cardinality are chosen and joined first. This

intermediate result this then joined with the dataset that has the lowest join output cardinality with either of the

two tables joined previously. In the next round, the dataset with the lowest join output cardinality with any of

the three datasets joined so far is chosen to join with the intermediate result and so on. The next chapter shows

the results of experimental evaluation and compares and contrasts the gains that

such optimization leads to.

3.3 Map-Side Join

The Reduce-Side join seems like the natural way to join datasets using Map/Reduce. It uses the framework’s

built-in capability to sort the intermediate key-value pairs before they reach the Reducer.

But this sorting often is a very time consuming step. Hadoop offers another way of joining datasets before they

reach the Mapper. This functionality is present out of the box and is arguably is the fastest way to join two

datasets using Map/Reduce, but places severe constraints (see table 3) on the datasets that can be used for the

join.

Fig. 4-Mapside Join

Table 3: Limitation of Map-Side Join

Limitation Why

All datasets must be sorted using the same comparator. The sort ordering of the data in each dataset must be

identi-cal for datasets to be joined.

All datasets must be parti-tioned using the same parti-

tioner.

A given key has to be in the same partition in each

dataset so that all partitions that can hold a key are

joined together.

The number of partitions in the datasets must be

identical.

A given key has to be in the same partition in each

dataset so that all partitions that can hold a key are

joined together.

These constraints are quite strict but are all satisfied by any output dataset of a Hadoop job. Hence as a pre-

processing step, we simply pass both the dataset through a basic Hadoop job. This job uses an Identity Mapper

and an Identity Reducer which do no processing on the data but simply pass it through the framework which

partitions, groups and sorts it. The output is compliant with all the constraints mentioned above. Although the

individual map tasks in a join lose much of the advantage of data locality, the overall job gains due to the

potential for the elimination of the reduce phase and/or the great reduction in the amount of data required for

the reduce.

This algorithm also supports duplicate keys in all datasets

3.4 Reduce-Side One-Shot Join

This is basically an extension of the Reduce-Side join .

A list of tables is passed as part of the job configuration to enable the Mapper and Reducer to know how many

tables to expect and what tags are associated with which table. For instance, to join n datasets, T1,T2,T3,…Tn,

this algorithm in simple relational algebra can be represented as –

 International Journal of New Innovations in Engineering and Technology

Volume 5 Issue 1– May 2016 54 ISSN : 2319-6319

IV. EVALUATION AND ANALYSIS

4.1 Environment

Experiments were conducted on 3 different kinds of clusters .There were two types of machines used that were

slightly different from each other –

 Type 1 Type 2

CPU Intel
R
 Xeon

TM
CPU 3.20GHz Intel

 R
 Xeon

TM
CPU 3.20GHz

Cores 4 4

Memory 3631632 KB 3369544 KB

Cache size 2 MB 1 MB

OS Linux Linux

Linux Kernel Ubuntu 14.04 Ubuntu 14.04
Table - 4 Types of machines used in the Experimental Cluster

All machines were running Clouders Inc.’s distribution of Hadoop – version 0.18.3+76. File system used in all

the experiments was HDFS.

4.2 Experimental Setup

Cluster Setup

There were three types of clusters used –

 Data Node(s) Name Nodes Job-Trackers Total Node(s)

Type 1 1 1 1 1

Type 2 3 1 1 5

Type 3 6 1 1 8
Table -5 Types of clusters used for the experiments

4.3 Multi-way Join algorithms across different clusters

For the multi-way join algorithms , we ran the three algorithms on different types of clusters . The datasets that

we used had -

 1 million tuples each.

 The same number of keys - #keys= 1/10 #tuples spread across the same key space.

Figure 5 shows the results that were observed. In result 1-machine cluster performed better than the 5-machine

cluster with the performance then improving again for the 8-machine cluster. On checking the logs, we found

the very same reasons for this anomaly. There was no network traffic involved in the case of 1-machine cluster

and this was a dominant factor in case of the 5-machine cluster. The 8-machine cluster performed better since

the smaller units of work that were well distributed across the cluster took lesser time to complete and brought

down the overall time.

Fig-5 Multi-way Join algorithms across different clusters

 International Journal of New Innovations in Engineering and Technology

Volume 5 Issue 1– May 2016 55 ISSN : 2319-6319

No of

nodes

Reduce-side

one-shot

Data Shuffle

Ratio

Map-side

Join

Pre-

Processing

Reduce-side

Cascade join

Pre-

processing

1 427 0 519 83 1889 85

5 1342 1.147 1657 243 2107 96

8 565 1.147 534 71 1612 32
Table -6 Multi-way Join algorithms across different clusters

V. CONCLUSION

We found some quite interesting results from our experiments on Join algorithms using Map/Reduce. Even

though our clusters were of relatively small sizes, we could notice from our experiments how the Hadoop

framework exploited the cluster architecture when more nodes were added . This gave us a first-hand feel of

why Hadoop seems to be enjoying such a high popularity among data warehousing specialists.

The behavior of the 1-machine cluster was observed in the case of multi-way joins as well while being tested on

different clusters. When we tested the multi-way algorithms with increasing data sizes, we successfully showed

that our optimization for Reduce-Side Cascade Join using output cardinality improved the performance of the

algorithm. Although this came at the cost of pre-processing step and was the slowest of the algorithms, it was

successful in joining datasets that contained over 2.5 million tuples whereas Reduce-Side One-Shot Join gave

Out Of Memory exception a number of times.

REFERENCES

[1] Apache cassandra.
[2] Apache hadoop. Website. http://hadoop.apache.org.

[3] Cloudera inc. http://www.cloudera.com.

[4] Hadoop wiki - poweredby. http://wiki.apache.org/hadoop/PoweredBy.
[5] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin.Hadoopdb: an architectural hybrid of mapreduce and

dbms technologies for analytical workloads. Proc. VLDB Endow., 2(1):922–933, 2009.

[6] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A comparison of join algorithms for log processing in
mapreduce. In SIGMOD ’10: Proceedings of the 2010 international conference on Management of data, pages 975–986, New York,

NY, USA, 2010. ACM.

[7] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope: easy and efficient parallel processing of
massive data sets. Proc. VLDB Endow., 1(2):1265–1276, 2008.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a

distributed storage system for structured data. In OSDI ’06: Proceedings of the 7th USENIX Symposium on Operating Systems Design
and Implementation, pages 15–15, Berkeley, CA, USA, 2006. USENIX Association.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.Commun. ACM, 51(1):107–113, 2008.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.
[11] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a notso-foreign language for data processing. In SIGMOD

’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 1099–1110, New York, NY,

USA, 2008. ACM.
[12] K. Palla. A comparative analysis of join algorithms using the hadoop map/reduce framework. Master’s thesis, School of Informatics,

University of Edinburgh,2009.

[13] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker. A comparison of approaches to large-scale
data analysis. In SIGMOD ’09: Proceedings of the 35th SIGMOD international conference on Management of data, pages 165–1078,

New York, NY, USA, 2009. ACM.
[14] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin. Mapreduce and parallel dbmss: friends or

foes? Commun. ACM,53(1):64–71, 2010.

[15] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P.Wyckoff, and R. Murthy. Hive: a warehousing solution
over a map-reduce framework. Proc. VLDB Endow., 2(2):1626–1629, 2009.

[16] J. Venner. Pro Hadoop. Apress, 1 edition, June 2009.

[17] S. Viglas. Advanced databases. Taught Lecture, 2010. http://www.inf.ed.ac.uk/teaching/courses/adbs.
[18] T. White. Hadoop: The Definitive Guide. O’Reilly Media, 1 edition, June 2009.

[19] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge: simplified relational data processing on large clusters. In

SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on Management of data,pages 1029–1040, New
York, NY, USA, 2007. ACM.

