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Abstract: As the prevalence of health-threatening diseases and mortality rates continue to increase, medical decision
support systems have demonstrated their effectiveness in enhancing the efficiency of healthcare providers and aiding
clinical decision-making. Diabetes is a significant contributor to global mortality, characterized by high blood glucose
levels that can lead to severe complications in various organs. The International Diabetes Federation (IDF) reports
that approximately 386 million individuals are currently living with diabetes, a figure projected to rise to 662 million
by 2038. This paper presents a clinical prediction model for diabetes utilizing machine learning (ML) techniques. We
explore widely used classifiers, including Logistic Regression (LR) and XGBoost, and compare their performance.
Additionally, we implement deep learning (DL) approaches, specifically a fully convolutional neural network (DNN),
for diabetes prediction. The models were assessed using the publicly available Kaggle database, with prediction
performance analysed through Precision, Recall, AUC, accuracy, and F1 metrics. Overall prediction efficiency was
evaluated based on accuracy and its macro-average across DL, LR, and XGBoost. The results indicated that XGBoost
achieved an accuracy of 93.78%, while LR and DL models recorded accuracies of 89.85% and 98.15%, respectively.
The findings suggest that XGBoost outperforms both deep learning and LR methods in predicting diabetes.

Keywords: Large-scale feature optimization, Diabetes mellitus, Feature selection, XGBoost, Deep FM (Deep
Factorization Machine).

I. INTRODUCTION

The World Health Organization (WHO) reports that around 1.6 million individuals die from diabetes each year.
When the pancreas fails to produce sufficient insulin, glucose cannot be utilized by cells, leading to elevated
blood sugar levels, [1]. This condition, known as hyperglycaemia, is characterized by symptoms such as
extreme hunger, intense thirst, and frequent urination. Diabetes mellitus is a complex metabolic disorder with
various underlying causes, defined by persistent hyperglycaemia and disruptions in carbohydrate, lipid, and
protein metabolism due to either inadequate insulin secretion, impaired insulin action, or a combination of both.
It is a chronic condition resulting from sustained high blood sugar levels. Approximately 10-15% of the global
population is affected by Type 2 diabetes, and the prevalence continues to rise, [2]. Uncontrolled blood sugar
levels can result in serious complications, including cardiovascular disease, kidney failure, stroke, and nerve
damage. There is currently no cure for diabetes, which remains one of the leading causes of mortality worldwide,
contributing to countless deaths each year. Currently, around 463 million people aged 20-79 are living with
diabetes, and projections suggest this figure could reach 700 million by 2045, [3].

Numerous studies indicate that deep learning techniques tend to outperform other methodologies, exhibiting
lower classification error rates. Deep learning is particularly effective at processing large datasets and
addressing complex problems with relative ease. In addition to deep learning, various machine learning and bio-
inspired computing methods are now employed for medical predictions. For example, research in 2019 utilized
logistic models for diabetes prediction. Recently, Lee developed an enhanced XGBoost algorithm based on
feature combinations, achieving an accuracy of 80.2%. Another study evaluated a diabetes dataset using nine
different classification algorithms, revealing that XGBoost performed exceptionally well, nearing 100%
accuracy, and significantly surpassed other machine learning and deep learning techniques in early diabetes
detection [4].
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This research focuses on improving the performance of the XGBoost model and comparing its effectiveness
with eight conventional machine learning models, such as logistic regression (LR), decision trees (DT), random
forests (RF), gradient-boosted decision trees (GBDT), AdaBoost, and neural networks (NN).

II. LITERATURE REVIEW

Kalisir and Dogantekin introduced the LDA-MWSVM system for diabetes diagnosis, integrating feature
extraction and dimensionality reduction through Linear Discriminant Analysis (LDA) with classification using
the Morlet Wavelet Support Vector Machine (MWSVM). Plis et al. examined various classification methods,
such as support vector machines (SVM) and logistic regression, to predict hypoglycaemia 30 minutes in
advance, achieving an accuracy of 23%. Ju young et al. used SVM and logistic regression to predict Type 2
diabetes (T2D) based on 499 single nucleotide polymorphisms (SNPs) from 87 associated genes. Deja et al [5].
employed a differential sequencing model to analyse fluctuations in patients' blood glucose levels and insulin
dosages, which assisted physicians in treatment decisions. Wright et al. applied the CSPADE algorithm for
sequence searching to uncover temporal relationships between medication prescriptions, enabling them to
forecast future patient medications. However, many of these studies did not optimize their hyperparameters.
Lagani and colleagues focused on various diabetes-related complications, including cardiovascular diseases
(CVD), hypoglycaemia, ketoacidosis, microalbuminuria, proteinuria, neuropathy, and retinopathy [6]. Their
research aimed to identify the most significant clinical parameters for these complications by utilizing a range of
predictive models developed through data mining and machine learning techniques. Additionally, another study
utilized drug purchase records and administrative data to implement temporal data mining methods, enhancing
the assessment of risks related to diabetic complications [7].

I1II. METHODS
1.1. Datasets

The diabetes dataset used in this study was obtained from a publicly accessible Kaggle repository and consists
of electronic medical records for 100,000 patients. It contains both medical and demographic details, along with
each patient's diabetes diagnosis (positive or negative). Key attributes include age, gender, weight, body mass
index (BMI), hypertension, cardiovascular disease, and blood glucose levels, as illustrated in Table 1 and Figure
1.

Table 1: Overview of Features

Feature Description

Age Age is a crucial factor since
diabetes is more commonly
observed in older adults.
Gender Gender refers to an
individual's biological sex,
which can influence diabetes
risk. The dataset shows a
distribution of 59% female
and 41% male.

Weight Weight affects individuals
because it can lead to either
insulin resistance or an
increased  sensitivity  to
insulin, impacting diabetes
development.

High Blood Pressure Hypertension  refers to
persistently elevated blood
pressure, represented as 0 (no

hypertension) or 1
(hypertension).
Glucose Level Blood glucose refers to the

concentration of  glucose
present in the bloodstream.
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Elevated levels are a key
indicator of diabetes.

BMI The Body Mass Index (BMI)
is a standard measure to
evaluate body weight status,
helping to determine overall
health. It is calculated using
the formula: BMI = weight
(kg) / height (m?). A higher
BMI correlates with a higher
risk of diabetes. BMI ranges
are: underweight (<18.8),
normal (18.8-25.3),
overweight (24-29), and
obese (>32). Values in the
dataset range from 10.16 to
71.65.

HbAlc Level The HbAlc test provides an
indication of average blood
sugar levels over the previous
two to three months. Higher
values indicate increased
diabetes risk, with a level
above 6.5% generally
signalling diabetes presence.
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Figure 1: Distribution Patterns and Analysis
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1.2. Data Preprocessing

1.2.1. Feature Analysis and Data Visualization

Before data preprocessing, data mining techniques and feature analysis are performed to understand the
distribution of the data and the interactions between various features. This is achieved through a combination of
visualization techniques and statistical methods, allowing for a comprehensive exploration of the dataset [8].
One frequently utilized technique in this context is correlation analysis, which assesses the strength of
relationships between different variables. This is done by calculating correlation coefficients, which quantify the
degree of association between the variables. The results of this analysis are often presented in heat maps,
providing a clear visual representation of the correlations and enabling easier identification of patterns and
relationships within the data. These analyses enhance comprehension of the data and inform subsequent
modelling and feature selection, as illustrated in Figure 2.
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Figure 2: Feature Correlation Analysis

Blood glucose levels and HbAlc levels demonstrated a moderately strong correlation with diabetes, with
correlation coefficients of 0.42 and 0.44, respectively. Among the characteristic variables, the highest correlation
was observed between BMI and age, indicating a certain linear relationship; however, this correlation is not very
strong. Therefore, in the processing of experimental data, the influence of the correlation between these two
variables can be disregarded, as shown in Figure 3.

target Outcome

outcome

Figure 3: Overview of Relationships in Diabetes Data
1.2.2. Data Preprocessing
1.2.2.1. Data Cleaning
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Handling Missing Values: Missing values can be addressed by replacing them with means, medians, or modes,
or through interpolation methods.

Handling Outliers: Outliers can be identified and managed using statistical or model-based approaches,
including truncation, deletion, or replacement.

Handling Duplicate Values: Duplicate samples or features should be removed to prevent negative impacts on
model training.

In this dataset, there were no missing values. The smoking history variable includes a category indicating
whether information about the patient's smoking history is available [9]. Initially, we examined the categorical
variables present in the dataset, as illustrated in Figure 4.

Bar Chart of Smoking History
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Figure 4: Analysis of Smoking History with Cases

There are many individuals for whom we lack information about smoking habits, so we have decided to retain
that category in the variable. While we could consider consolidating other less frequent categories, we will keep
this variable unchanged for now. We also conducted a chi-squared test to assess the correlation between this
variable and the output, which indicated a significant relationship [10].

Additionally, there is another category that appears to be an error in data collection. Due to the lack of
correlation between gender and other variables, we cannot manually correct these values. Since there are only
18 such entries, we will assign them to the most frequent category, which is Female. A chi-squared test
confirmed that there is indeed a correlation between the output and these variables. After reviewing the
categorical data, we will move on to analysing the numerical data [11]. Given that we have both binary and
continuous numerical values, we performed two separate analyses, as shown in Figure 5.
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Figure 5: Distribution Analysis of the Dataset
2.2.2. Data  Preprocessing

2.2.2.1. Data  Cleaning

The BMI variable contains numerous outliers, which we will leave as is for now since a multivariable outlier
analysis will be conducted later. Other variables mostly show normal distributions, with a few outliers that are
not concerning. We can now proceed to analyse the binary variables.

Initially, there is a significant class imbalance in the dataset, with only 5% of individuals having diabetes,
making accuracy an inadequate metric for evaluation [12]. There is also a correlation between the output and the
input binary variables, as indicated by the Pearson correlation coefficient, highlighting their substantial impact
on the outcome. The next step involves converting categorical variables into numerical data.

3.2.2.2. Data Transformation and Splitting

For feature encoding in this study, we applied One-Hot Encoding to enhance the performance and generalization
of the machine learning models. The dataset was split into training, validation, and test sets, with 70%
designated for training, 15% for validation tuning, and 15% for final evaluation.

As gender is a binary categorical variable, we utilized binary encoding, assigning a value of 1 for Female and 0
for Male. Regarding the smoking history variable, we used One Hot Encoder, creating five new columns
corresponding to each unique value. The final preprocessing step involved normalizing the data using Min Max
Scaler, especially given the numerous columns created by One Hot Encoder [13]. With the preprocessing
complete, we can now shift our focus to anomaly detection, followed by the separation of the training,
validation, and test sets for further modelling.

3.3. Models

3.3.1.  XGBoost

XGBoost is a flexible and efficient library designed for distributed gradient-based decision boosting. Developed
by Dr. Tianqi Chen at the University of Washington, it is founded on the gradient boosting decision tree (GBDT)
algorithm. In GBDT, a tree is trained using the training dataset along with the actual values of the samples, with
the predictions subtracted from these true values to obtain residuals. A new tree is then trained on these residuals
instead of the original values [14]. This iterative process continues, with each subsequent tree learning to predict
the residuals of the ensemble created by previous trees. The number of trees can be specified manually, and
training can be monitored and halted based on various performance metrics, such as validation set error.

When making predictions on new samples, each tree in XGBoost contributes an initial value that is combined to
generate the final prediction, resulting in better performance compared to the standard GBDT algorithm [15]. In
contrast to GBDT, which depends solely on first-order derivatives, XGBoost employs a second-order Taylor
expansion of the loss function, allowing for a more effective and reliable solution. By incorporating a
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regularization term, XGBoost reduces the model's variance, leading to a simpler model that helps prevent
overfitting.

3.3.2.  Other Models
In this study, we compared seven different models for data analysis: Logistic Regression (LR), Random Forest
(RF), Decision Trees (DT), Gradient Boosting Decision Trees (GBDT), AdaBoost, and Neural Networks (NN).

3.4. Experimental Setup

The dataset was divided into a training set and a test set. We utilized 3,000 cases in the training phase to train
and validate the XGBoost models, while 27,000 patients were used for performance evaluation in the test phase.

The hyperparameters set for the experiment included 50 epochs and a batch size of 100. Increasing the batch
size reduces the number of iterations (updates) per epoch, which can lead to underfitting, necessitating an
increase in epochs. For each set, we employed Grid Search for hyperparameter optimization and cross-
validation for model assessment [16]. Four grid search objects—grid Tree, grid KNN, grid Logistic, and grid
Boost—were established for tuning the decision tree classifier, K-nearest neighbour classifier, logistic regression
model, and gradient boosting classifier, respectively. Each object defined a unique parameter grid and cross-
validation fold. In DT, three parameters—

‘Min_samples_leaf,’
‘Max_depth,’
‘Min_samples_split’

were tuned with a cross-validation fold of 3. The KNN model had a fold of 5 with ‘estimators’ specified, while
Logistic Regression also used a fold of 5 with ‘Param grid.” The Boost model had a fold of 3 with ‘learning rate’
and ‘estimators’ defined.

3.5 Assessment Metrics

We utilized accuracy, precision, recall, AUC, and F1 score as assessment metrics in this study. In the formulas
used, the first letter indicates the correctness of the prediction (T for true and F for false), while the second letter
denotes the category of the prediction (P for positive and N for negative) [17]. The number of positive samples
is denoted as M, and the number of negative samples as N, with the index i belonging to the set of positive
sample counts.

Table 2. Model Performance Outcomes.

LR DT RF GBDT AdaBoost XGBoost NN
Accuracy 0.90 0.96 0.97 0.97 0.95 0.98 0.93
AUC 0.97 0.87 0.98 0.98 0.99 0.99 0.98
Precisionl 0.45 0.69 0.79 0.75 0.60 0.95 0.53
Recalll 0.90 0.76 0.77 0.82 0.88 0.75 0.90
F1|1 0.58 0.72 0.59 0.77 0.72 0.85 0.68
Precision0 0.99 0.97 0.99 0.99 0.98 0.98 0.98
RecallO 0.90 0.98 0.99 0.98 0.96 0.99 0.93
F1]0 0.95 0.98 0.98 0.98 0.97 0.99 0.96
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where,
P = Precision.
R = Recall.

TP = True Positive.

FP = False Positive.

FN = False Negative.
TN = True Negative.
AUC = AreaUnder Curve.
i = Set of Positive Sample Numbers.
M = Number of positive Samples.
N = Number of Negative Samples.
IV. RESULTS AND DISCUSSION

4.1. Results

In this study, we selected a diabetes dataset containing 8 feature variables and 30,000 samples to
investigate diabetes diagnosis. We developed an Extreme Gradient Boosting (XGBoost)-based model for data
training, incorporating deep neural networks (NN) and visualizing the training process [18]. The final model
achieved an accuracy of 98.01%, precision of 95.05%, and recall of 99.02%. This research successfully
diagnosed diabetes mellitus using a deep neural network approach, yielding significant findings that facilitate
diabetes diagnosis, effectively reducing medical costs and enhancing diagnostic efficiency.

The performance metrics for XGBoost were as follows: an accuracy of 0.98, a recall of 0.99, a precision of 0.95,
an F1 score of 0.82, and an FO score of 0.99. These outcomes suggest that XGBoost exhibits a high degree of
accuracy, with some precision rates and overall accuracy significantly surpassing those of other models [19-23].
Our findings suggest that XGBoost provides superior prediction accuracy compared to alternative models,
including Logistic Regression (LR), Decision Trees (DT), Random Forests (RF), Gradient Boosting Decision
Trees (GBDT), and  AdaBoost, when applied to unsupervised learning with multiple data sources, as
summarized in Table 2.

DISCUSSION

In this experiment, the various model metrics indicate that XGBoost outperformed Gradient Boosting Decision
Trees (GBDT) and other models in terms of accuracy, recall, and especially precision [24]. The metrics reported
for accuracy, AUC, precision, recall, and F1 score were 0.98, 0.99, 0.95, 0.75, and 0.85, respectively. Comparing
GBDT and XGBoost reveals several factors such as sampling methods, tree depth, choice of base learner,
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parallel processing capabilities, and approaches to handling missing data and anomalies that influence
performance.

XGBoost shares similarities with Random Forests (RF) by utilizing column sampling to enhance computational
efficiency and reduce overfitting, while GBDT employs all available features. Additionally, XGBoost can utilize
either CART regression trees or linear classifiers as its base learner, in contrast to GBDT, which is restricted to
CART regression trees [25-27]. By parallelizing feature selection, XGBoost accelerates the search for optimal
split points through pre-sorted features. It also applies L1 and L2 regularization to leaf nodes, which helps
mitigate overfitting, and employs second-order Taylor expansion for improved loss curve fitting compared to
GBDT’s reliance on first-order gradients. The incorporation of shrinkage helps scale leaf node weights,
facilitating learning in subsequent stages; practitioners often adjust the eta parameter to lower values with
increased iterations for enhanced learning as illustrated in Figure 6 and Figure 7.
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Figure 6: Variable Severity Levels Analysis.
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Figure 7: Algorithm Performance Analysis.

Logistic Regression (LR) is effective for discrete features, as discretized features are more robust against
anomalies. It is categorized as a generalized linear model with limited expressive power; after discretization into
N categories, each variable receives a distinct weight, introducing nonlinearity and enhancing model
expressiveness [28]. Crossover of features can transform M + N variables into M * N variables, further
increasing nonlinearity and improving model capability.

Random Forest improves upon decision tree algorithms by generating a forest of classification trees. It
repeatedly samples k observations from the original training set N with replacement to form new training sets,
then builds k trees based on these sets. Each tree plays a role in the overall classification decision, with the final
outcome being determined through a voting process. This approach helps minimize overfitting, as each tree is
trained on a different subset of the data [29-31]. The randomness introduced through both row sampling (with
replacement) and column sampling (selecting m features from M) prevents overfitting, eliminating the necessity
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for pruning. Each decision tree is constructed until leaf nodes are either pure or unable to split further, resulting
in a robust ensemble that enhances classification accuracy while reducing bias.

Decision trees create partitions in samples based on a hierarchical evaluation of attributes. While they can fit
well to the training set, an overfitted model has limited utility for testing samples, necessitating branch pruning
to mitigate overfitting risks. A validation set is employed to assess the tree’s performance, informing which
branches should be pruned. GBDT offers more nonlinear transformations and strong expressive capabilities,
eliminating the need for complex feature engineering. However, it also presents drawbacks; its sequential
execution is not conducive to parallel processing, leading to high computational demands, and it struggles with
high-dimensional sparse features. Traditional GBDT relies solely on first-order derivative information during
optimization [32]. AdaBoost’s adaptability is showcased through reweighting misclassified samples from the
preceding classifier, which are then used to train subsequent classifiers. A new weak classifier is introduced in
each iteration until an acceptable error rate is reached or a predetermined iteration limit is met.

In this study, the training process for a Neural Network (NN) is iterative, where initial weights are randomly
assigned. Each iteration sees input samples processed through neurons, weighted by existing connections, and
passed through an activation function, progressing layer by layer until the final output is produced. This output
is compared to the target, and the cost is calculated, prompting adjustments to weights throughout the network to
minimize cost. This iterative process continues until convergence.

The dataset's limited size, featuring only 8 variables, constrains the effectiveness of neural networks,
heightening the risk of overfitting and limiting the potential for high-dimensional feature interactions. The time
investment required for model structuring and training parameter selection is also considerable given the small
dataset [33]. Conversely, tree-based models are well-suited for smaller datasets, focusing on manual
identification of significant features. While boosting algorithms excel with tabular data, deep learning
techniques perform better with larger, non-tabular datasets [34]. Deep learning is adept at automatically
generating hidden features for complex data, but it is generally less efficient than gradient boosting trees.
Although deep learning can surpass gradient boosting in tabular contexts, it requires substantial time for
network tuning. In instances where tabular data lacks discernible patterns, neural networks may necessitate
inefficient fully connected architectures, making traditional machine learning models and specialized networks
like Deep FM (Deep Factorization Machine) more pragmatic choices [35].

This study acknowledges certain limitations that should be addressed in future research to enhance model
performance and predictive accuracy. The primary limitation is the insufficient sample size, which impacts the
efficacy of current machine learning models. The dataset of 30,000 instances with 8 feature variables is
relatively small and affects the accuracy of the findings. Additionally, due to limited data sources and patient
privacy considerations, existing publicly available datasets often lack comprehensive updates and adequate
sample sizes [36]. Future studies should seek to expand data resources by exploring alternative datasets,
including variables related to family history of diabetes or lifestyle factors as illustrated in Figure 8.

Figure 8: Contrasting Algorithms
IV. CONCLUSION
Diabetes remains a critical health concern, and this study highlights the significance of using XGBoost for

diabetes prediction. By performing data preprocessing and visualization on the dataset utilized in this
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experiment, and optimizing hyperparameters using Grid Search, we compared the performance of XGBoost
with six other models. XGBoost consistently outperformed other models, attaining an accuracy of 98%, a
precision of 95%, and a recall of 99%. This research underscores the clinical utility of XGBoost for effectively
diagnosing diabetes mellitus, providing valuable support for healthcare professionals in patient assessments.
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