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Abstract - Hematopoietic Stem Cell Transplantation (HSCT), also known as Bone Marrow Transplantation (BMT), is 

a life-saving procedure that is employed to treat hereditary diseases, immunological deficiencies, and other 

hematologic malignancies. Strong assessment and monitoring strategies are still necessary to be resolved issues such 

graft-versus-host disease (GVHD), graft failure, and infections even if transplanting methods have advanced.  BMT 

assessments used to be completed by hand under histological inspection and clinical supervision in the past.  These 

techniques are prone to observer bias, incorrect, and time-consuming, though.  By automatically sorting, quantifying, 

and locating stem cells, bone marrow components, and issues following a transplant, digital image processing (DIP) 

has made finding these easier.  This has altered medical diagnosis of diseases.  This paper examines the efficacy of 

several forms of BMT—autologous, allogeneic, haploidentical, and umbilical cord blood transplantation—using DIP-

based approaches.  It offers an all-encompassing analysis of many models.  Bone marrow engraftment and immune 

cell reconstitution were tested under several segmentation techniques.  These comprised a deep learning-based U-Net, 

edge detection, thresholding, and K-means clustering.  Among the machine learning models applied to forecast and 

group transplant results were Support Vector Machine (SVM), Random Forest (RF), Convolutional Neural Network 

(CNN), and Recurrent Neural Network (RNN).  With the best accuracy (92.3%) and AUC-ROC score (0.95), CNN 

emerged from the data as outperforming the other models.  On the other hand, U-Net showed outstanding 

segmentation ability with an IoU value of 93.1%.  Combining predictive analytics with DIP helps this study to 

increase patient outcomes.  This makes BMT tests more accurate and helps to identify early on issues.  For scalable, 

real-time clinical uses in next research, imaging datasets should be standardized, computational models should be 

refined, and artificial intelligence driven automation should be incorporated. 

Keywords: Bone Marrow Transplantation (BMT), Hematopoietic Stem Cell Transplantation (HSCT), Graft-Versus-

Host Disease (GVHD), Graft Failure, Digital Image Processing (DIP). 

I. INTRODUCTION 

A medical operation with the possibility to save lives is hematopoietic stem cell transplantation (HSCT), 

sometimes known as Bone Marrow Transplantation (BMT) [1].  Healthy hematopoietic stem cells are used in 

this surgery to repair damaged or sick bone marrow [2, 3].  For patients with life-threatening diseases including 

leukemia, lymphoma, sickle cell anemia, and many inherited immune system defects, it is a quite vital 

intervention [4].  Bone marrow transplantation helps the body to restore normal hematopoiesis and 

immunological capacity [5].  Though supportive drugs and transplantation operations have come a long way, 

BMT still carries many hazards including graft-versus-host disease (GVHD), infections, and graft-failure [6].  

These risks might cause major problems and a higher death rate.  When the transplanted stem cells cannot 

adhere to the recipient's tissues and create new blood cells, a graft fails.  Conversely, GVHD results from 

immune cells from the donor attacking recipient tissues.  It is essential to apply exact assessment techniques and 

ongoing monitoring to ensure good transplant results [7, 8]. 

Bone marrow transplants were assessed historically by clinical surveillance, histological studies of bone marrow 

aspirates, and blood cell analysis [9, 10].  These traditional methods take time, call for highly experienced 

pathologists, and could be prone to human mistake [11].  Because of the complexity of cell shape, variances in 

staining techniques, and changes in sample quality, manual evaluation is challenging.  As such, automated and 

exact transplanting assessment techniques are in more and more demand.  By means of high-precision analysis 

of medical images, digital image processing (DIP) has transformed the discipline of medical diagnosis [12, 13]. 

DIP techniques automate the identification, classification, and quantification of bone marrow components, stem 
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cells, and blood cells, hence transforming hematology and pathology.  DIP reduces the difference between 

observers, increases the accuracy of diagnosis, and facilitates early problem spotting by means of machine 

learning and deep learning algorithms [14].  

BMT uses DIP to assess post-transplant engraftment, track problems like GVHD, and assess donor-recipient 

histocompatibility [15].  DIP simplifies the measurement of cell shape, their proliferation rates, and the integrity 

of their structures in several ways: pattern recognition, feature extraction, and image segmentation [16]. DIP 

inclusion into the BMT evaluation has greatly improved the dependability and efficacy of transplant evaluations 

[17, 18].  DIP-based automation raises the possibility of successful engraftment and speeds donor choice.  Pre-

transplant testing including stem cell viability tests and human leukocyte antigen (HLA) compatibility also 

benefits from it [19, 20].  By let clinicians maintain an eye on bone marrow repair, immune cell reconstitution, 

and early on issues, post-transplant monitoring using DIP increases patient survival rates.  Training on massive 

sets of medical pictures, machine learning models can detect minute changes in the bone marrow 

microenvironment [21, 22].  Using historical patient data, predictive analytics driven by artificial intelligence 

(AI) can also indicate what might happen with a transplant [23].  This allows clinicians to reduce risks by acting 

in particular ways.  Though these developments have been made, DIP still presents challenges for BMT.  

Datasets must be consistent, for instance, imaging techniques vary, and there are few computers accessible.  

Future study has to focus on the development of robust, interpreted, clinically relevant image processing 

algorithms to improve the accuracy and scalability of DIP-based BMT assessment. 

 This work evaluates bone marrow transplantation models using digital image processing techniques and 

presents a comprehensive review of them.  It addresses the clinical applications as well as the advantages and 

drawbacks of the several forms of BMT: autologous, allogeneic, haploidentical, and umbilical cord blood 

transplantation [24]. The study also looks at pre-transplant evaluations, post-transplant monitoring, and DIP 

application in predictive analytics. By means of a thorough investigation of image-collecting techniques, 

segmentation algorithms, feature extraction strategies, and machine learning models, this work aims to show 

how DIP could improve BMT evaluation.  By bridging the gap between clinical practice and computing 

developments, this paper explains how digital technology has altered hematopoietic stem cell transplantation.  

More individualized treatment and improved patient outcomes are thus made possible. 

II. BONE MARROW TRANSPLANTATION MODELS 

The degree of compatibility between the donor and the recipient as well as the source of stem cells define the 

several bone marrow transplanting (BMT) models [25]. These models project the transplant's success, the risk of 

complications, and the engraftment rate.  Four main varieties of BMT include umbilical cord blood 

transplantation, autologous, allogeneic, and haploidentical [26].  Optimizing patient outcomes depends on 

accurate evaluation techniques since every model has different therapeutic indications, advantages, and 

drawbacks. 

2.1 Autologous Bone Marrow Transplantation 

Hematopoietic stem cells can be harvested from a patient and stored in a freezer prior to high-dose radiation or 

chemotherapy [27]. The stem cells left after the treatment eliminates malignant or damaged cells are reinfused to 

restore bone marrow function.  This transplantation approach is often used in management of multiple myeloma, 

non-Hodgkin's lymphoma, and Hodgkin's lymphoma.  Autologous BMT mostly benefits the patient since it uses 

their own cells and does not induce GVHD or immune system rejection [28].  Still, there is a chance that 

malignant cells might be reinfused and cause the disease to resurep.  DIP techniques are required to verify stem 

cell viability, purity, and growth rates employed in autologous transplantation.  Confocal microscopy and flow 

cytometry are among modern imaging techniques that simplify the automatic evaluation of stem cell populations 

and ensure that only premium stem cells are transplanted. 

2.2 Allogeneic Bone Marrow Transplantation 

Stem cells from a genetically matched donor—who may be a sibling or an unrelated donor from a registry—are 

transferred in allogeneic bone marrow transplantation [29, 30].  Many times used to diagnose inherited blood 

disorders, leukemia, and aplastic anemia is this model.  Allogeneic bone marrow transplantation offers primarily 

the possibility for a graft-versus-leukemia (GVL) impact, in which immune cells from the donor target any 

residual cancer cells [31].  This lessens the possibility of the cancer resurfacing.  Still, there's a good risk the 
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treatment will cause GVHD, a disorder whereby donor T-cells target the recipient's healthy tissues.  HLA 

matching depends on DIP techniques since they ensure the best degree of compatibility between donors and 

recipients [32].  Using histocompatibility pictures, machine learning techniques estimate GVHD likelihood and 

help to customize immunosuppressive drugs.  After transplantation, digital pathology also facilitates automated 

immune reconstitution surveillance, providing real-time data on how well engraftment is performing. 

2.3 Haploidentical Bone Marrow Transplantation 

Haploidentical BMT uses stem cells from a partially matched family member, say a parent or child.  For those 

without a totally matched donor, this approach provides an other choice [33].  Although it enhances donor 

availability, haploidentical BMT is more likely to cause severe GVHD and graft rejection.  Advanced DIP 

techniques are needed for immune cell imaging, T-cell depletion evaluation, and conditioning regimen 

augmentation.  By using histological characteristics to project what issues might arise following a transplant, AI-

powered image processing systems enable surgeons to make better decisions. 

2.4 Umbilical Cord Blood Transplantation 

Umbilical cord blood (UCB) transplantation is the procedure of implacing stem cells from umbilical cord blood 

units kept in either public or commercial facilities [34].  UCB is more forgiving of HLA incompatibility, so 

GVHD is less common [35].  But the small cell count in cord blood units can cause delayed engraftment, which 

raises the infection risk.  DIP-based automation guarantees the correct dosage of stem cells, therefore improving 

their quantification and ensuring their availability for transplantation. Assess the grade of UCB by employing 

image processing techniques such as segmentation and feature extraction, thereby influencing the selection of 

donors.  BMT models need accurate evaluation methods if they are to maximize patient outcomes [36].  

Including DIP into BMT assessment simplifies early on issue identification, real-time monitoring of the 

engraftment process, and automatic donor choice.  Transplantation models will get better as computational 

hematology and photo analysis driven by artificial intelligence keeps developing.  This will enhance the survival 

rate and mitigate the risks associated with transplantation. 

III. LITERATURE REVIEW 

Alawneh et.al (2024) determined the Many blood diseases, including cancer, start in bone marrow. 

Hematopoietic stem cell transplantation (HSCT), often known as BMT, saves lives. This treatment has a high 

fatality rate. Therefore, predicting BMT survival is crucial for accuracy and efficacy. Infections, toxicity, and 

graft-versus-host disease accompany BMT, causing treatment-related death. BMT efficacy and long-term 

survival depend on risk factors. BMT survival requires a machine learning-based prognostic approach. Doctors 

can make informed surgical judgments using this technology. This work used a publicly available BMT dataset 

from the University of California, Irvine ML repository to test multiple machine learning models to predict 

BMT survival in children. The dataset trained Random Forest (RF), Bagging Classifier, Extreme Gradient Boost 

(XGBoost), Adaptive Boosting (AdaBoost), Decision Tree (DT), Gradient Boost (GB), and K-Nearest 

Neighbors. The dataset comprises 45 variables after preprocessing and correlation heat map-based 

multicollinearity reduction. After feature engineering and modeling uncovered key traits, machine learning 

models enhanced categorization. The bagging classifier and KNN model were trained utilizing DT and GB's key 

features. Both methods adjusted hyperparameters using Grid Search Cross-Validation (GSCV) to enhance 

survival forecast accuracy. RF, AdaBoost, GB, and Bagging are most accurate at 97.37%. 

Sarkis et.al (2023) discussed the Bone marrow (BM) trephine biopsies for hematologic and nonhematologic 

illnesses must assess BM cellularity. Clinical evaluation by hematopathologists involves semiquantitative ocular 

examination of hematopoietic and adipocyte components. This approach cannot quantify other stromal 

compartments. This study developed and validated MarrowQuant 2.0, a user-friendly and efficient digital 

hematopathology process. This procedure, which is integrated into QuPath software, quantifies human BM 

trephine biopsies' cellularity in five mutually exclusive compartments: bone, hematopoietic, adipocytic, 

interstitial/microvasculature, and others. The machine learning-based StarDist algorithm is updated to segment 

adipocyte instances. Hematoxylin and eosin pictures of 250 bone specimens from controls and patients with 

acute myeloid leukemia or myelodysplastic syndrome were used to examine BM compartments and adipocyte 

size distributions at diagnosis and follow-up. 
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Oliveira et.al (2020) determined the Hematopoietic stem cell engraftment is contingent upon the cells' homing, 

the presence of sufficient cell numbers, and the subsequent short- and long-term engraftment in the niche. The 

following keyword sequences were employed in PubMed, Cochrane, and Scopus to conduct our search: 

(Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND 

(Transplantation ). The papers were published and indexed prior to January 2020. Following the screening and 

eligibility evaluation, this study included only 21 of the 2191 identified articles. 43% of the cell supply was 

derived from rodent bone marrow, while 33% was derived from human umbilical cords. However, the 

allogeneic graft was the most beneficial, as the efficiency increased to over 50% after three months. The results 

of our analysis indicate that the utilization of noninvasive imaging techniques for HSC tracing in the bone 

marrow transplant model has increased. Nevertheless, the development of engraftment and the post-graft cell 

activity are two critical components of a successful transplant. These characteristics are not adequately 

investigated, despite their substantial relevance for clinical analysis. 

Papadimitriou et.al (2020) studied the Multiple myeloma (MM) remains incurable, despite the proliferation of 

novel drugs. Preclinical 2D models are incapable of simulating the bone marrow microenvironment, as 

demonstrated previously, rendering them incapable of predicting the progression of the disease. In this review, 

we concentrate on 3D models and provide all ex vivo MM models that are presently available and meet specific 

criteria. The capacity to test a variety of medications and the ability to create complex 3D environments using 

patients' cells are essential for evaluating the efficacy of personalized MM treatment plans and combinations. 

These models were selected to represent the most advanced ex vivo systems, and their timeliness, cost, and 

viability were assessed. Lastly, we suggest that this model may be more beneficial when evaluating the course of 

therapy for a patient. Sophisticated 3D preclinical models are generally quite promising, as they could 

potentially provide the opportunity to select the most effective, personalized treatment plan for each MM 

patient. 

Jamil et.al (2020) proposed the Bone drilling creates a cavity and fastens bone fragments to prevent irreversible 

paralysis. Force, cavity quality, and heat produce osteonecrosis in bone drilling. Cutting circumstances, drill 

geometric parameters, and bone-specific properties make bone drilling a viable option to conventional and 

nonconventional drilling. Optimizing drilling settings and performance measures dominates published research, 

even though few factors are considered. Bone drilling requires standards and innovative drilling methods. All 

assessed attributes and performance measurements require the use of frameworks. This review study intends to 

build a framework hierarchy and compile most of the examined parameters. Reviewing parameters and 

performance measures will address literature conflicts. It inventively organizes criteria, performance indicators, 

logical comparisons, and research bounds. This thorough assessment can help medical surgeons and design 

engineers grasp this cutting-edge technology's complicated features and performance. Testing new orthopedic 

drilling methods with modeling, simulations, and optimization is possible. 

Khan et.al (2020) Traditional machine learning (TML) and deep learning (DL) methods in computer vision 

increase MIA prediction accuracy. Designing effective planning and diagnosing methods is easier. These 

technologies substantially improved brain, leukemia, and blood cancer diagnosis. They may also give 

hematologists and doctors a new perspective. Leukocyte categorization in blood stain images and other medical 

imaging domains, including MRI, CT, X-rays, and ultrasounds, is explored in this paper using MIA TML and 

DL algorithms. The review's key contribution is establishing the best blood stain leukocyte categorization TML 

and DL MIA algorithms. This paper examines advanced DL methods and convolutional neural network-based 

MIA models. Relevant research reveals the use of classic TML methods for assessing microscopic white blood 

cell stain images. Doctors use them to diagnose leukemia and AIDS. 

Lee et.al (2019) studied the efficacy of craniofacial bone regeneration using xenografts, BMSCs, and DPSCs is 

uncertain. The first part of this study looked at BMSC and DPSC cells in a lab setting and compared their shape, 

growth, trilineage differentiation, mineral production, and osteogenic gene expression. We then transplanted 

four experimental groups—Bio-Oss alone, Bio-Oss+BMSCs, Bio-Oss+DPSCs, and empty control—into rabbit 

calvarial defects. BMSCs and DPSCs had similar shapes, surface marker profiles, cell-proliferative abilities, and 

the ability to differentiate into three different types of cells. On the other hand, BMSCs had more mineral 

deposition and osteogenic marker gene expression, such as OCN, RUNX2, and ALP. Studies done inside living 

things showed that both MSC groups had a lot more bone volume density than either the empty control group or 

the Bio-Oss alone group. Scaffold+MSC groups had higher bone formation and Collagen I/osteoprotegerin 
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protein expressions than Bio-Oss alone groups. Bone mineral density, osteogenesis-related protein expression, 

and new bone formation were all about the same in the Bio-Oss+BMSC and Bio-Oss+DPSC groups. 

IV. RESEARCH METHODOLOGY 

Digital image processing (DIP) techniques allow one to fully assess the efficacy of bone marrow transplantation 

(BMT) models. The approaches of this study consist of experimental, descriptive, and analytical ones. This 

approach aims to ensure the methodical evaluation, the application of computational techniques, and the 

outcome verification by means of pragmatic data analysis. To ensure the accuracy and precision of BMT 

evaluation, the research follows a precisely defined methodology covering data-collecting methods, digital 

image processing techniques, research design, and research approach. 

4.1. Research Design 

This study presents a thorough overview of bone marrow transplantation (BMT) models and their evaluation 

utilizing digital image processing (DIP) employing a descriptive and analytical research technique combining 

qualitative and quantitative methodologies. Three main steps separate the research to ensure a complete 

examination of the topic. Review and Theoretical Foundation, the first step, covers the function of DIP in 

medical imaging, related problems, and BMT models together with a thorough literature review. This means 

looking at peer-reviewed literature, clinical studies, and medical textbooks on computational hematology and 

hematopoietic stem cell transplantation to provide a strong theoretical basis. The second step involves applying 

digital image processing methods to medical imaging like bone marrow aspirates and histopathology slides. 

Image preparation, segmentation, feature extraction, and classification constitute part of this process. Several 

machine learning algorithms are under development and testing to provide automatic assessment of post-

transplant problems and transplanting success. The goal is to maximize diagnostic accuracy and reduce the need 

for human interventions. In the last stage, Performance Evaluation and Comparative Analysis, DIP-based 

evaluation models are assessed with standard performance criteria including accuracy, sensitivity, precision, and 

specificity. Furthermore, a comparison of several BMT models using digital imaging evaluations helps to 

determine their effectiveness. This organized way of studying makes a complete framework for both quantitative 

and qualitative evaluations that makes transplantation assessments more useful, accurate, and useful in the real 

world. This strategy guarantees rigorous, evidence-based research of DIP's contribution to BMT evaluation. 

4.2. Research Approach 

This study employed a hybrid research methodology that integrates quantitative and qualitative methodologies 

to conduct a thorough assessment of Bone Marrow Transplantation (BMT) models through Digital Image 

Processing (DIP). In order to validate DIP techniques in BMT assessment, the qualitative approach entails a 

comprehensive literature review, clinical report analysis, and expert commentary from hematologists and 

computational imaging specialists.    For the segmentation, feature extraction, and classification of bone marrow 

histopathology images, the quantitative method employs machine learning and deep learning algorithms.    The 

efficacy of transplantation is evaluated by statistical models using F1-scores, AUC-ROC curves, sensitivity, 

specificity, and accuracy. This integration guarantees a comprehensive and data-driven evaluation, thereby 

enhancing the accuracy of diagnosis and the success of transplantation. 

4.3. Data Collection Methods 

This study uses both first-hand and second-hand data collection methods to make sure that the dataset for testing 

bone marrow transplantation (BMT) models is strong and consistent. The main sources of data are medical 

imaging datasets that are open to the public. These include histopathology slides, bone marrow aspirates, and 

peripheral blood stain pictures. The information comes from hematology image datasets from websites like NIH 

Open Access, Kaggle, and The Cancer Imaging Archive (TCIA), as well as MRI and PET scans that are relevant 

to bone marrow analysis and can be found in public medical imaging repositories. Clinical trial papers, 

textbooks, and peer-reviewed publications covering digital image processing and BMT techniques provide 

secondary data. Apart from medical books on donor-recipient matching, complications, and post-transplant 

monitoring, as well as clinical case studies, IEEE Xplore, Elsevier, Springer, and ScienceDirect are other 

sources. The gathered data is preprocessed, anonymized (if necessary), and transformed into a generic format for 

Digital Image Processing (DIP) analysis, therefore ensuring the accuracy and consistency of transplantation 

result assessments. 
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4.4 Digital Image Processing Techniques for BMT Assessment 

Digital Image Processing (DIP) techniques are used in this study to improve the accuracy of transplantation 

result predictions and to automate the evaluation of bone marrow transplants (BMT). We acquire high-resolution 

images, apply noise reduction methods (median, Gaussian filters), achieve contrast enhancement (AHE), and 

normalize to ensure consistency. Different segmentation methods are used to find stem cells and abnormal 

structures. These include thresholding, edge detection (Sobel, Canny), clustering (K-means, fuzzy C-means), 

and deep learning-based segmentation (U-Net, Mask R-CNN). We collect and classify characteristics using 

wavelet transform, HOG, color-based analysis, and cell morphology to discriminate between malignant and 

normal cells. Machine learning models such as SVM, Random Forest, CNNs, and RNNs predict post-transplant 

complications and categorize cells. The performance evaluation is made up of the F1-score, accuracy, 

sensitivity, specificity, precision, recall, and AUC-ROC curves. This makes sure that BMT evaluations are 

reliable and that transplant outcomes are better. 

V. RESULT 

This study evaluates the efficacy of Digital Image Processing (DIP) methods in evaluating Bone Marrow 

Transplantation (BMT) models, with a particular emphasis on segmentation accuracy, classification 

performance, and predictive analytics. The study investigates the potential of automated picture analysis to 

enhance transplant evaluations by employing a variety of machine learning and deep learning techniques. DIP 

integration reduces the necessity for manual evaluations by improving the precision of detecting immune cell 

reconstitution, bone marrow engraftment, and post-transplant complications. The subsequent sections provide a 

comprehensive examination of classification models, segmentation strategies, and their respective performances, 

thereby emphasizing the potential of DIP-driven automation in clinical hematology. 

Table 1: Classification Model Accuracy 

Model Accuracy (%) 

SVM 85.6 

Random Forest 88.4 

CNN 92.3 

RNN 90.1 

 

The accuracy table of the classification model displays the performance of various machine learning models, 

including the Support Vector Machine (SVM), Random Forest, Convolutional Neural Network (CNN), and 

Recurrent Neural Network (RNN), that are employed to evaluate Bone Marrow Transplantation (BMT).  The 

CNN model exhibited the highest accuracy at 92.3%, indicating its exceptional capacity to analyze intricate 

histopathological images and differentiate between normal and abnormal bone marrow cells.  The RNN model 

closely followed with an accuracy of 90.1%, demonstrating its efficacy in identification of sequential patterns in 

medical imaging data.  The robust decision-tree-based learning approach of the Random Forest model enabled it 

to perform exceptionally well, achieving an accuracy rate of 88.4%.  Finally, the SVM model achieved an 

accuracy of 85.6%, which is the lowest among the evaluated models. Nevertheless, it remains a dependable 

choice for classification tasks.  In general, deep learning models (CNN and RNN) outperformed traditional 

machine learning models (SVM and Random Forest), underscoring the benefits of deep feature extraction and 

pattern recognition in digital image processing for BMT evaluation. 
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Figure 1: Accuracy Comparison of Classification Models  

Table 2: Classification Model Performance 

Model Precision (%) Recall (%) F1-Score (%) 

SVM 83.2 84 83.6 

Random Forest 86.7 87.5 87.1 

CNN 91 92.5 91.7 

RNN 89.2 90 89.6 

 

The classification model performance table assesses the efficacy of various machine learning models, including 

Support Vector Machine (SVM), Random Forest, Convolutional Neural Network (CNN), and Recurrent Neural 

Network (RNN), using three critical performance metrics: Precision, Recall, and F1-Score.  The CNN model 

exhibited the highest overall performance among the models, with a Precision of 91%, Recall of 92.5%, and an 

F1-Score of 91.7%. This confirms its strong capacity to accurately classify bone marrow images while 

maintaining a balance between false positives and false negatives.  Another highly efficient model for 

classification tasks was RNN, which followed closely with an F1-Score of 89.6%.  Despite being a non-deep 

learning approach, the Random Forest model demonstrated a high level of reliability, as evidenced by its F1-

Score of 87.1%.  The SVM model exhibited the lowest performance, with an F1-Score of 83.6%, indicating that 

it may not be as effective as the other models in managing the complexity of bone marrow image classification.  

In general, traditional machine learning models (SVM and Random Forest) were outperformed by deep learning 

models (CNN and RNN) in the assessment of Bone Marrow Transplantation (BMT) using Digital Image 

Processing. This was illustrated by the superior feature extraction and classification accuracy. 
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Figure 2: Performance Metrics of Classification Models 

Table 3: Segmentation Performance 

Segmentation Method IoU Score (%) 

Thresholding 76.5 

Edge Detection 80.2 

K-means 85.3 

U-Net 93.1 

 

The Intersection over Union (IoU) scores of various segmentation methods—Thresholding, Edge Detection, K-

means, and U-Net—that are employed to analyze bone marrow images in the analysis of Bone Marrow 

Transplantation (BMT) are presented in the segmentation performance table.  The U-Net deep learning model 

achieved the highest IoU score of 93.1%, which is indicative of its exceptional capacity to accurately partition 

bone marrow structures and differentiate between normal and abnormal cells with high precision.  K-means 

clustering was succeeded by an IoU score of 85.3%, which illustrated its efficacy in combining pixels with 

similar intensities for image segmentation.  The Edge Detection method, which achieved an IoU score of 80.2%, 

demonstrated moderate success in recognizing the boundaries between various cellular structures.  The IoU 

score of 76.5% was the lowest recorded by Thresholding, which underscores its limitations in the processing of 

intricate bone marrow images with changing intensities.  In general, U-Net demonstrated a significant 

improvement over conventional segmentation methods, underscoring the effectiveness of deep learning models 

in achieving precise and dependable segmentation for BMT assessment through the use of Digital Image 

Processing techniques. 
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Figure 3: Segmentation Performance Based on Different Methods 

Table 4: AUC-ROC Scores 

Model AUC-ROC Score 

SVM 0.89 

Random Forest 0.91 

CNN 0.95 

RNN 0.93 

 

The AUC-ROC scores table assesses the performance of various machine learning models, including Support 

Vector Machine (SVM), Random Forest, Convolutional Neural Network (CNN), and Recurrent Neural Network 

(RNN), in the classification of bone marrow images for Bone Marrow Transplantation (BMT) determination. 

The ability of a model to differentiate between classes is quantified by AUC-ROC (Area Under the Receiver 

Operating Characteristic Curve), with values closer to 1.0 suggesting superior performance. CNN's strongest 

classification capability and high accuracy in detecting abnormalities in bone marrow images were confirmed by 

its highest AUC-ROC score of 0.95, which was attained among the models. RNN was closely followed by a 

score of 0.93, which illustrated its efficacy in sequential image analysis. The AUC-ROC score of 0.91 indicates 

that Random Forest is a reliable machine learning approach, despite its traditional nature. The SVM model has 

the lowest AUC-ROC score of 0.89, indicating that it is effective but slightly less robust than the other models in 

managing complex image data. Overall, the advantages of neural networks in medical image classification and 

BMT assessment using Digital Image Processing were reinforced by the fact that deep learning models (CNN 

and RNN) outperformed traditional methods. 
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Figure 4: AUC-ROC Scores of Different Classification Models 

 

5.1 Discussion 

This study demonstrates how Digital Image Processing (DIP) enhances monitoring and outcome evaluation in 

BMT. Two subjective, time-consuming, error-prone BMT evaluation methods are manual histological study and 

clinical surveillance. When you use DIP and machine learning and deep learning algorithms, you can more 

accurately, quickly, and automatically check for GVHD, graft failure, immune cell reconstitution, and 

engraftment after a transplant. With 92.3% classification accuracy and 0.95 AUC-ROC, convolutional neural 

networks (CNNs) presented the best machine learning model. This shows how well deep learning models, 

especially CNNs, can tell the difference between healthy and unhealthy cell structures and look at images of 

bone marrow. Since recurrent neural networks (RNNs) on medical imaging data effectively caught sequential 

dependencies, they performed well. Although still useful, conventional machine learning models like SVM and 

RF performed poorer in classification, thereby indicating that deep feature extraction techniques increase BMT 

assessment accuracy. Based on deep learning, U-Net has an IoU score of 93.1%, which is higher than K-means 

clustering (85.3%), edge detection (80.2%), and thresholding (76.5%). These findings reveal that more precise 

and consistent deep learning-based segmentation techniques detect components of bone marrow and track post-

transplant changes. U-Net accurately describes the structures of cells, which lets us do more accurate tests on 

hematopoietic stem cell engraftment and immune system recovery. Furthermore, shown by the study, are 

predictive analytics' ability to forecast transplant success and challenges. Machine learning algorithms, using 

past patient data, can predict potential dangers, thereby guiding doctors in their selection of immunosuppressive 

treatment and donors. DIP, together with predictive modeling driven by artificial intelligence, can significantly 

lower transplanting failure rates and improve patient survival. Notwithstanding these developments, DIP-based 

BMT evaluation has significant challenges. Standardizing imaging datasets among different medical facilities 

guarantees homogeneity of machine learning model training. Furthermore, computational resource limits and 

imaging process variability compromise the performance of automated assessment models. Future development 

should focus on stronger, more interpreted and scalable image processing algorithms for real-time clinical 

processes. Federated learning methods could make DIP more useful in hematology and transplant medicine by 

letting many institutions share medical images that have been anonymized so that AI models can learn from 

them without sharing private information. This work demonstrates how predictive analytics driven by digital 

image processing and artificial intelligence change bone marrow transplantation assessment. To raise BMT 
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evaluation accuracy, efficiency, and scalability, DIP automates segmentation, classification, and result 

prediction. DIP-based approaches could become the gold standard for post-transplant monitoring and tailored 

patient treatment as deep learning, computational hematology, and medical imaging develop. 

VI. CONCLUSION 

In the end, this work shows how digital image processing (DIP) methods can be used to make testing and 

keeping an eye on bone marrow transplantation (BMT) models better. Manual histological inspection and 

clinical surveillance are two common ways to check for problems with BMT that aren't always accurate, take a 

lot of work, and are prone to human error. By combining deep learning and machine learning models, DIP is a 

better, faster, and more accurate way to find problems after a bone marrow transplant, such as graft-versus-host 

disease (GVHD) and graft death. It also works better when it comes to automating the process. Convolutional 

Neural Networks (CNNs) had the best accuracy (92.3%) and AUC-ROC score (0.95), out of all the classification 

models used to look at bone marrow histology pictures. With an IoU score of 93.1%, U-Net, a deep learning-

based segmentation technique, showed its best effectiveness in precisely identifying cellular structures. These 

results highlight how better deep learning models—especially CNNs and U-Net—are than traditional machine 

learning methods in both classification and segmentation challenges. Early problem diagnosis and improved 

post-transplant surveillance follow from this performance improvement. The paper also highlights how 

predictive analytics could be used to forecast transplant efficacy and danger. By means of previous patient data, 

machine learning algorithms can enable doctors to make more educated decisions on immunosuppressive 

medication, donor selection, and post-transplant management approaches. While a lot of progress has been 

made, issues like standardizing imaging datasets, the lack of consistency in medical imaging methods, and the 

limited availability of computer resources need to be fixed before they can be widely used in clinical settings. 

The main goal of future research should be to make DIP-based artificial intelligence models easier to 

understand, more scalable, and able to work with real-time data in hematology and transplant medicine. 

Combining DIP with predictive analytics powered by AI could change how BMT assessments are done by 

increasing accuracy, lowering observer bias, and improving patient survival rates. For better and more 

personalized monitoring after a transplant, as technology improves, automated DIP-based assessments are likely 

to become a standard tool in clinical hematology. 
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